Skip to main content
Log in

Gene duplication and functional divergence of new genes contributed to the polar acclimation of Antarctic green algae

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Psychrophilic microalgae successfully survive in the extreme and highly variable polar ecosystems, which represent the energy base of most food webs and play a fundamental role in nutrient cycling. The success of microalgae is rooted in their adaptive evolution. Revealing how they have evolved to thrive in extreme polar environments will help us better understand the origin of life in polar ecosystems. We isolated a psychrophilic unicellular green alga, Microglena sp. YARC, from Antarctic sea ice which has a huge genome. Therefore, we predicted that gene replication may play an important role in its polar adaptive evolution. We found that its protein-coding gene number significantly increased and the duplication time was dated between 37 and 48 million years ago, which is consistent with the formation of the circumpolar Southern Ocean. Most duplicated paralogous genes were enriched in pathways related to photosynthesis, DNA repair, and fatty acid metabolism. Moreover, there were a total of 657 Microglena-specific families, including collagen-like proteins. The divergence in the expression patterns of the duplicated and species-specific genes reflects sub- and neo-functionalization during stress acclimation. Overall, key findings from this study provide new information on how gene duplication and their functional novelty contributed to polar algae adaptation to the highly variable polar environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This article does not contain any original research data.

References

  • Allorent G, Lefebvre-Legendre L, Chappuis R (2017) UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 113:14864–14869

    Article  Google Scholar 

  • Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27:219–225

    Article  PubMed  Google Scholar 

  • Arrigo KR, Mills MM, Kropuenske LR, van Dijken GL, Alderkamp AC, Robinson DH (2010) Photophysiology in two major Southern Ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels. Integr Comp Biol 50:950–966

    Article  PubMed  Google Scholar 

  • Aslam SN, Strauss J, Thomas DN, Mock T, Underwood GJC (2018) Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J 12:1237–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    Article  CAS  PubMed  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  CAS  PubMed  Google Scholar 

  • Brierley AS, Thomas DN (2002) Ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–276

    Article  PubMed  Google Scholar 

  • Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    Article  PubMed  Google Scholar 

  • Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Phil Trans R Soc Lond B 338:299–309

    Article  Google Scholar 

  • Clerck OD, Kao SM, Bogaert KA, Blomme J, Foflonker F (2018) Insights into the evolution of multicellularity from the sea lettuce genome. Curr Biol 28:2921-2933.e5

    Article  PubMed  Google Scholar 

  • Demchenko E, Mikhailyuk T, Coleman AW, Thomas P (2012) Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrative approach. Eur J Phycol 47:264–290

    Article  Google Scholar 

  • Eddie B, Krembs C, Neuer S (2008) Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar Ecol Prog Ser 354:107–117

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbertson R, Langan E, Mock T (2022) Diatoms and their microbiomes in complex and changing polar oceans. Front Microbiol 13:786764

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Tuteja N (2016) Abiotic stress signaling in plants—an overview. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants, 1st edn. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 3–22

    Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Guschanski K, Warnefors M, Kaessmann H (2017) The evolution of duplicate gene expression in mammalian organs. Genome Res 27:1461–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassler CS, Schoemann V, Boye M, Tagliabue A, Rozmarynowycz M, McKay RM (2012) Iron bioavailability in the Southern Ocean. Oceanogr Mar Biol 50:1–64

    Google Scholar 

  • Hawes C (2005) Cell biology of the plant Golgi apparatus. New Phytol 165:29–44

    Article  PubMed  Google Scholar 

  • Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci USA 106:3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirooka S, Hirosec Y, Kanesaki Y, Higuchi S, Fujiwara T, Onuma R, Era A, Ohbayashi R, Uzuka A, Nozaki H, Yoshikawa H, Miyagishima S (2017) Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proc Natl Acad Sci USA 114:E8304–E8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopes A, Thomas DN, Mock T (2017) Polar microalgae: functional genomics, physiology, and the environment. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology, 2nd edn. Springer, Cham, pp 305–344

    Google Scholar 

  • Howitt SM, Michael KU (2000) Structure, function and regulation of ammonium transporters in plants. BBA-Bioenergetics 1465:152–171

    CAS  PubMed  Google Scholar 

  • Hüner NP, Smith DR, Cvetkovska M, Zhang X, Ivanov AG, Szyszka-Mroz B, Kalra I, Morgan-Kiss R (2022) Photosynthetic adaptation to polar life: energy balance, photoprotection and genetic redundancy. J Plant Physiol 268:153557

    Article  PubMed  Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    Article  CAS  PubMed  Google Scholar 

  • Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karentz D, Euen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166

    Article  CAS  Google Scholar 

  • Kennedy F, Martin A, Bowman JP, Wilson R, McMinn A (2019) Dark metabolism: a molecular insight into how the Antarctic sea-ice diatom Fragilariopsis cylindrus survives long-term darkness. New Phytol 223:675–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Kim MD, Park SC, Jeong JC, Kwak SS, Lee HS (2016) Transgenic potato plants expressing the cold-inducible transcription factor SCOF-1 display enhanced tolerance to freezing stress. Plant Breed 135:513–518

    Article  CAS  Google Scholar 

  • Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc B 279:5048–5057

    Article  PubMed  PubMed Central  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struc Biol 11:39–46

    Article  CAS  Google Scholar 

  • Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake passage. Earth Planet Sci Lett 236:459–470

    Article  CAS  Google Scholar 

  • Lutz S, Alexandre MA, Field K, Benning LG (2015) Integrated ‘omics’, targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol 6:1323

    Article  PubMed  PubMed Central  Google Scholar 

  • McMinn A, Martin A (2013) Dark survival in a warming world. Proc Biol Sci 280:20122909

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMinn A, Pankowskii A, Ashworth C, Bhagooli R, Ralph P, Ryan K (2010) In situ net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplankton and benthic algal communities. Mar Biol 157:1345–1356

    Article  CAS  Google Scholar 

  • McQuaid JB, Kustka AB, Oborník M, McCrow JP, Allen AE (2018) Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555:534–537

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540

    Article  CAS  PubMed  Google Scholar 

  • Moreno CM, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A (2018) Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol 41:679–696

    Article  Google Scholar 

  • Nicol L, Croce R, van Grondelle R, van Amerongen H, van Stokkum I (2018) Light harvesting in higher plants and green algae. In: Croce R, van Grondelle R, van Amerongen H, van Stokkum I (eds) Light harvesting in photosynthesis. CRC Press, pp 59–76

    Google Scholar 

  • Niyogi KK, Thuy BT (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (2013) Evolution by gene duplication. Springer Verlag, Heidelberg

    Google Scholar 

  • Perez-Garcia O, Froylan MEE, Luz EB, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Qian WF, Zhang JZ (2014) Genomic evidence for adaptation by gene duplication. Genome Res 24:1356–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramundo S, Casero D, Mühlhaus T, Hemme D, Rochaix JD (2014) Conditional depletion of the Chlamydomonas chloroplast clpP protease activates nuclear genes involved in autophagy and plastid protein quality control. Plant Cell 26:2201–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocca NL, Sciuto K, Meneghesso A, Moro I, Rascio N, Morosinotto T (2015) Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica. Physiol Plant 153:654–667

    Article  PubMed  Google Scholar 

  • Rochaix JD, Bassi R (2019) LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem J 476:581–593

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV (2018) Light harvesting control in plants. FEBS Lett 592:3030–3039

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (2022) Solutions: how adaptive changes in cellular fluids enable marine life to cope with abiotic stressors. Mar Life Sci Technol 4:389–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic Sea ice—a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Poll WH, Abdullah E, Visser RJW, Fischer P, Buma AGJ (2020) Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol Oceanogr 65:903–914

    Article  Google Scholar 

  • Van Etten J, Bhattacharya D (2020) Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet 36:915–925

    Article  PubMed  Google Scholar 

  • Venables H, Moore MC (2010) Phytoplankton and light limitation in the Southern Ocean: learning from high-nutrient, high-chlorophyll areas. J Geophys Res 115:C02015

    Google Scholar 

  • Wada N, Toshio S, Seiichi M (2015) Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4:603–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fan X, Gao G, Beardall J, Inaba K, Hall-Spencer JM (2020) Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters. Nat Clim Change 10:561–567

    Article  Google Scholar 

  • Wu GX, Hufnagel DE, Denton AK, Shiu SH (2015) Retained duplicate genes in green alga Chlamydomonas reinhardtii tend to be stress responsive and experience frequent response gains. BMC Genomics 16:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HJ, Li YQ, Hua J (2006) The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J 48:238–248

    Article  CAS  PubMed  Google Scholar 

  • Ye NH, Han WT, Toseland A, Wang YT, Fan X, Xu D (2022) The role of zinc in the adaptive evolution of polar phytoplankton. Nat Ecol Evol 6:965–978

    Article  PubMed  Google Scholar 

  • Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) KaKs Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinf 4:259–263

    Article  CAS  Google Scholar 

  • Zhang X, Cvetkovska M, Morgan-Kiss R, Hüner NP, Smith DR (2021) Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience 24:102084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Programme of China (2022YFD2400105), Laoshan Laboratory (LSKJ202203801), Natural Science Foundation of Shandong Province (ZR2021MD075, ZR202211110025), National Natural Science Foundation of China (41676145, 32000404), Central Public-interest Scientific Institution Basal Research Fund, CAFS (2023TD28, 2023TD19), China Agriculture Research System (CARS-50), the Young Taishan Scholars Program, Taishan Scholars Program.

Author information

Authors and Affiliations

Authors

Contributions

XZ and NY: designed the study. XZ, WT, XF and KS: analyzed the data. YW, DX, WW, YZ and JM: conducted the laboratory experiments. WT: drew the figures. XZ: wrote the manuscript. NY: improved and revised the manuscript.

Corresponding author

Correspondence to Naihao Ye.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Author Naihao Ye is a member of the Editorial Board, but he was not involved in the journal’s review of, or decision related to this manuscript.

Animal and human rights statement

No animal or human rights are involved in this article.

Additional information

Edited by Jiamei Li.

Special Topic: EvoDevo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1642 KB)

Supplementary file2 (XLSX 791 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Han, W., Fan, X. et al. Gene duplication and functional divergence of new genes contributed to the polar acclimation of Antarctic green algae. Mar Life Sci Technol 5, 511–524 (2023). https://doi.org/10.1007/s42995-023-00203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-023-00203-z

Keywords

Navigation