Skip to main content
Log in

Delivery methods for CRISPR/Cas9 gene editing in crustaceans

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

In this mini-review, we provide an up-to-date overview of the delivery methods that have been used for CRISPR/Cas9 genomic editing in crustacean species. With embryonic microinjection as the main workforce for delivering CRISPR/Cas9 reagents, biologists working with crustacean species have to tackle the technical challenges involved in microinjection. We use examples of three crustacean species (the branchiopod Daphnia, amphipod Parhyale hawaiensis, and decapod Exopalaemon carinicauda) to provide a technical guide for embryonic microinjection. Moreover, we outline two potentially useful new techniques for delivering CRISPR/Cas9 components into crustaceans, i.e., Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR, Kim D, McKeand S, Rasgon JL (2018) Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat Commun 9:3008

    Article  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  • Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034

    Article  CAS  Google Scholar 

  • Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–117

    Article  CAS  Google Scholar 

  • Farboud B, Jarvis E, Roth TL, Shin J, Corn JE, Marson A, Meyer BJ, Patel NH, Hochstrasser ML (2018) Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. J Vis Exp 135:e57350

    Google Scholar 

  • Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J (2014) Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513:120–123

    Article  CAS  Google Scholar 

  • Gui TS, Zhang JQ, Song FG, Sun YY, Xie SJ, Yu KJ, Xiang JH (2016) CRISPR/Cas9-mediated genome editing and mutagenesis of EcChi4 in Exopalaemon carinicauda. G3 Genes Genom Genet 6:3757–3764

    CAS  Google Scholar 

  • Hiruta C, Toyota K, Miyakawa H, Ogino Y, Miyagawa S, Tatarazako N, Shaw JR, Iguchi T (2013) Development of a microinjection system for RNA interference in the water flea Daphnia pulex. BMC Biotechnol 13:96

    Article  CAS  Google Scholar 

  • Hiruta C, Kakui K, Tollefsen KE, Iguchi T (2018) Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water flea Daphnia pulex. Genes Cells 23:494–502

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  • Kaneko T, Mashimo T (2015) Simple genome editing of rodent intact embryos by electroporation. PLoS ONE 10:e0142755

    Article  Google Scholar 

  • Kato Y, Shiga Y, Kobayashi K, Tokishita S, Yamagata H, Iguchi T, Watanabe H (2011) Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 220:337–345

    Article  CAS  Google Scholar 

  • Kontarakis Z, Pavlopoulos A (2014) Transgenesis in non-model organisms: the case of Parhyale. Methods Mol Biol 1196:145–181

    Article  CAS  Google Scholar 

  • Kontarakis Z, Pavlopoulos A, Kiupakis A, Konstantinides N, Douris V, Averof M (2011) A versatile strategy for gene trapping and trap conversion in emerging model organisms. Development 138:2625–2630

    Article  CAS  Google Scholar 

  • Kumagai H, Nakanishi T, Matsuura T, Kato Y, Watanabe H (2017) CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna. PLoS ONE 12:e0186112

    Article  Google Scholar 

  • Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257

    Article  CAS  Google Scholar 

  • Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci USA 106:13892–13896

    Article  CAS  Google Scholar 

  • Mali P, Esvelt KM, Church GM (2013a) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  CAS  Google Scholar 

  • Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013b) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  • Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O’Connell LC, Patel NH (2016) CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Curr Biol 26:14–26

    Article  CAS  Google Scholar 

  • Nakanishi T, Kato Y, Matsuura T, Watanabe H (2014) CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS ONE 9:e98363

    Article  Google Scholar 

  • Ozhan-Kizil G, Havemann J, Gerberding M (2009) Germ cells in the crustacean Parhyale hawaiensis depend on Vasa protein for their maintenance but not for their formation. Dev Biol 327:230–239

    Article  Google Scholar 

  • Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci USA 102:7888–7893

    Article  CAS  Google Scholar 

  • Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ 56:499–510

    Article  CAS  Google Scholar 

  • Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120

    Article  CAS  Google Scholar 

  • Toyota K, Miyagawa S, Ogino Y, Iguchi T (2016) Microinjection-based RNA interference method in the water flea, Daphnia pulex and Daphnia magna. In: Abdurakhmonov IY (ed) RNA interference. IntechOpen, Rijeka, pp 119–135

    Google Scholar 

  • Troder SE, Ebert LK, Butt L, Assenmacher S, Schermer B, Zevnik B (2018) An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS ONE 13:e0196891

    Article  Google Scholar 

  • Watanabe H, Kato Y, Kobayashi K, Iguchi T (2010) Introduction of foreign DNA into the water flea, Daphnia magna, by electroporation. Ecotoxicology 19:589–592

    Article  Google Scholar 

  • Xiong X, Chen M, Lim WA, Zhao D, Qi LS (2016) CRISPR/Cas9 for human genome engineering and disease research. Annu Rev Genomics Hum Genet 17:131–154

    Article  CAS  Google Scholar 

  • Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH Grant R35GM133730 to Sen Xu.

Author information

Authors and Affiliations

Authors

Contributions

SX, TP and SN reviewed literature and wrote the manuscript. The manuscript has been approved by all authors.

Corresponding author

Correspondence to Sen Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Animal and human rights statement

No animal and human rights are involved in this article.

Additional information

Edited by Jiamei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Pham, T.P. & Neupane, S. Delivery methods for CRISPR/Cas9 gene editing in crustaceans. Mar Life Sci Technol 2, 1–5 (2020). https://doi.org/10.1007/s42995-019-00011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-019-00011-4

Keywords

Navigation