Skip to main content

Advertisement

Log in

Modeling spatio-temporal activity dynamics of the small relict marsupial Dromiciops gliroides

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Spatial and temporal heterogeneity can affect animal activity patterns under environmental conditions that fluctuate over time and space. The activity timing and habitat structure are essential components of the animals' choices. Here we studied the spatio-temporal activity dynamics of an arboreal marsupial (Dromiciops gliroides) with a key ecological role, endemic to the Andean Patagonian forest. Using camera traps and live traps, we determined temporal variations and the effect of the spatial variables at the micro (habitat structure)- and macro (forest type and geographic location)-scales on the activity patterns of D. gliroides. We built a hierarchical regression model to accommodate variation at both temporal and spatial levels. At a temporal level, we found that D. gliroides was affected by seasonality, increasing their activity toward the end of the summer and the beginning of autumn. At a spatial level, habitat structure was extremely important for this marsupial, particularly shrub cover which positively affected D. gliroides activity. Behavioral adjustments that we documented may be driven by differences in resource availability or predator avoidance. These findings help to understand the mechanisms modulating the activity of D. gliroides, essential for the conservation of this species with an ecological role that allows extended positive consequences to the whole forest community. Our results further support the importance of understory conservation for the survival of this species and warn about the negative consequences of habitat degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the woody flora of the temperate forest of southern South America: biogeographical origin and present ecological significance. Ecol Austral 8:217–236

    Google Scholar 

  • Amico GC, Rodríguez-Cabal MA, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecol 35:8–13

    Article  Google Scholar 

  • Arana MD, Natale E, Ferretti N, Romano G, Oggero A, Martínez G, Posadas P, Morrone JJ (2021) Esquema biogeográfico de la República Argentina. Fundacion Miguel Lillo, Tucuman, Argentina.

  • Balazote Oliver A, Amico GC, Rivarola MD, Morales JM (2017) Population dynamics of Dromiciops gliroides (Microbiotheriidae) in an austral temperate forest. J Mammal 98:1179–1184

    Article  Google Scholar 

  • Balko EA, Underwood BH (2005) Effects of forest structure and composition on food availability for Varecia variegata at Ranomafana National Park, Madagascar. Am J Primatol 66:45–70

    Article  PubMed  Google Scholar 

  • Barros OG, Cintra R (2009) The effects of forest structure on occurrence and abundance of three owl species (Aves: Strigidae) in the Central Amazon forest. Zoologia (Curitiba) 26:85–96

    Article  Google Scholar 

  • Barros VR, Cordón V, Moyano C, Méndez R, Forquera J, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén, primera contribución. Facultad de Ciencias Agrarias, Cinco Saltos, Neuquén, Argentina

  • Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American “living fossil”, the microbiotheriid Dromiciops gliroides. J Comp Physiol B 174:293–297

    Article  PubMed  Google Scholar 

  • Bro-Jørgensen J (2008) Dense habitats selecting for small body size: a comparative study on bovids. Oikos 117:729–737

    Article  Google Scholar 

  • Brown JS, Kotler BP, Bouskila A (2001) Ecology of fear: foraging games between predators and prey with pulsed resources. Ann Zool Fennici 38:71–87

    Google Scholar 

  • Caravaggi A, Gatta M, Vallely M-C, Hogg K, Freeman M, Fadaei E, Dick JT, Montgomery WI, Reid N, Tosh DG (2018) Seasonal and predator-prey effects on circadian activity of free-ranging mammals revealed by camera traps. PeerJ 6:e5827

    Article  PubMed  PubMed Central  Google Scholar 

  • Celis-Diez JL, Hetz J, Marín-Vial PA, Fuster G, Necochea P, Vásquez RA, Jaksic FM, Armesto JJ (2012) Population abundance, natural history, and habitat use by the arboreal marsupial Dromiciops gliroides in rural Chiloé Island, Chile. J Mammal 93:134–148

    Article  Google Scholar 

  • Ciechanowski M, Zając T, Biłas A, Dunajski R (2007) Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter. Can J Zool 85:1249–1263

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Clarke JA (1983) Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and deermice (Peromyscus maniculatus). Behav Ecol Sociobiol 13:205–209

    Article  Google Scholar 

  • Connolly BM, Orrock JL (2018) Habitat-specific capture timing of deer mice (Peromyscus maniculatus) suggests that predators structure temporal activity of prey. Ethology 124:105–112

    Article  Google Scholar 

  • Cortés PA, Franco M, Sabat P, Quijano SA, Nespolo RF (2011) Bioenergetics and intestinal phenotypic flexibility in the microbiotherid marsupial (Dromiciops gliroides) from the temperate forest in South America. Comp Biochem Physiol Part A Mol Integr Physiol 160:117–124

    Article  Google Scholar 

  • Di Virgilio A, Amico GC, Morales JM (2014) Behavioral traits of the arboreal marsupial Dromiciops gliroides during Tristerix corymbosus fruiting season. J Mammal 95:1189–1198

    Article  Google Scholar 

  • Diete RL, Meek PD, Dickman CR, Lisle A, Leung LK-P (2017) Diel activity patterns of northern Australian small mammals: variation, fixity, and plasticity. J Mammal 98:848–857

    Article  Google Scholar 

  • Donati G, Campera M, Balestri M, Serra V, Barresi M, Schwitzer C, Curtis DJ, Santini L (2016) Ecological and anthropogenic correlates of activity patterns in Eulemur. Int J Primatol 37:29–46

    Article  Google Scholar 

  • Duchêne DA, Bragg JG, Duchêne S, Neaves LE, Potter S, Moritz C, Johnson RN, Ho SY, Eldridge MD (2018) Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst Biol 67:400–412

    Article  PubMed  Google Scholar 

  • Fontúrbel FE, Jiménez J (2011) Environmental and ecological architects: Guidelines for the Chilean temperate rainforest management derived from the monito del monte (Dromiciops gliroides) conservation. Rev Chil De Hist Nat 84:203–211

    Article  Google Scholar 

  • Fontúrbel FE, Silva-Rodríguez EA, Cárdenas NH, Jiménez JE (2010) Spatial ecology of monito del monte (Dromiciops gliroides) in a fragmented landscape of southern Chile. Mamm Biol 75:1–9

    Article  Google Scholar 

  • Fontúrbel FE, Franco M, Rodríguez-Cabal MA, Rivarola MD, Amico GC (2012) Ecological consistency across space: a synthesis of the ecological aspects of Dromiciops gliroides in Argentina and Chile. Naturwissenschaften 99:873–881

    Article  PubMed  Google Scholar 

  • Fontúrbel FE, Candia AB, Botto-Mahan C (2014) Nocturnal activity patterns of the monito del monte (Dromiciops gliroides) in native and exotic habitats. J Mammal 95:1199–1206

    Article  Google Scholar 

  • Fontúrbel FE, Salazar DA, Medel R (2017) Increased resource availability prevents the disruption of key ecological interactions in disturbed habitats. Ecosphere 8:e01768

    Article  Google Scholar 

  • Fontúrbel FE, Orellana JI, Rodríguez-Gómez GB, Tabilo CA, Castaño-Villa GJ (2021) Habitat disturbance can alter forest understory bird activity patterns: a regional-scale assessment with camera-traps. For Ecol Manag 479:118618

    Article  Google Scholar 

  • Franco LM, Fontúrbel FE, Guevara G, Soto-Gamboa M (2019) Movement behavior of the Monito del monte (Dromiciops gliroides): new insights into the ecology of a unique marsupial. Rev Chil De Hist Nat 92:8

    Article  Google Scholar 

  • Frey S, Fisher JT, Burton AC, Volpe JP (2017) Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sens Ecol Conserv 3:123–132

    Article  Google Scholar 

  • Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS (2019) Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol Evol 34:355–368

    Article  PubMed  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1:515–534

    Article  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge, England

    Book  Google Scholar 

  • Gorini L, Linnell JD, May R, Panzacchi M, Boitani L, Odden M, Nilsen EB (2012) Habitat heterogeneity and mammalian predator–prey interactions. Mamm Rev 42:55–77

    Article  Google Scholar 

  • Griffin PC, Griffin SC, Waroquiers C, Mills LS (2005) Mortality by moonlight: predation risk and the snowshoe hare. Behav Ecol 16:938–944

    Article  Google Scholar 

  • Guélat J, Kéry M (2018) Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods Ecol Evol 9:1614–1625

    Article  Google Scholar 

  • Guiden PW, Orrock JL (2019) Invasive shrubs modify rodent activity timing, revealing a consistent behavioral rule governing diel activity. Behav Ecol 30:1069–1075

    Article  Google Scholar 

  • Halle S, Stenseth NC (2012) Activity patterns in small mammals: an ecological approach. Springer, Berlin

    Google Scholar 

  • Ibarra JT, Altamirano TA, Vermehren A, Vargas FH, Martin K (2017) Observations of a tree-cavity nest of the Rufous-legged Owl and predation of an Owl nestling by a Chimango caracara in Andean temperate forests. J Raptor Res 51:85–89

    Article  Google Scholar 

  • Ikeda T, Uchida K, Matsuura Y, Takahashi H, Yoshida T, Kaji K, Koizumi I (2016) Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camera-trap survey. PLoS ONE 11:e0163602

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen SP, Honess P (1995) The influence of moonlight on vegetation height preference and trappability of small mammals. Mammalia 59:35–42

    Google Scholar 

  • Jensen SP, Gray SJ, Hurst JL (2005) Excluding neighbours from territories: effects of habitat structure and resource distribution. Anim Behav 69:785–795

    Article  Google Scholar 

  • Jiménez J (2005) Monito de monte (Dromiciops gliroides), fósil viviente y único marsupial gondwánico del orden Microbiotheridae. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago de Chile, pp 541–543

    Google Scholar 

  • Jobbágy EG, Paruelo JM, León RJ (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Kitzberger T (2012) Ecotones as complex arenas of disturbance, climate, and human impacts: the trans-Andean forest-steppe ecotone of northern Patagonia. In: Myster RW (ed) Ecotones between forest and grassland. Springer, New York, pp 59–88

    Chapter  Google Scholar 

  • Kotler BP, Brown J, Mukherjee S, Berger-Tal O, Bouskila A (2010) Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc Royal Soc B 277:1469–1474

    Article  Google Scholar 

  • Lara A, Rutherford P, Montory C, Bran D, Pérez A, Clayton S, Ayesa J, Barrios D, Gross M, Iglesias G (2000) Vegetación de la Eco-región de los Bosques Valdivianos. Escala 1: 500.000. Informe Final Proyecto Binacional Chile-Argentina, UACh-INTA-APN-FVSA. Boletín Técnico, Fundación Vida Silvestre Argentina 51:1–29

    Google Scholar 

  • Li X, Bleisch WV, Jiang X (2018) Using large spatial scale camera trap data and hierarchical occupancy models to evaluate species richness and occupancy of rare and elusive wildlife communities in southwest China. Divers Distrib 24:1560–1572

    Article  Google Scholar 

  • Martin GM (2010) Geographic distribution and historical occurrence of Dromiciops gliroides Thomas (Metatheria: Microbiotheria). J Mammal 91:1025–1035

    Article  Google Scholar 

  • Martin G (2019) Dromiciops gliroides. Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción, Lista Roja de los mamíferos de Argentina. https://doi.org/10.31687/SaremLR.19.001

  • Martin G, Flores D, Teta P (2015) Dromiciops gliroides. The IUCN Red List of Threatened Species. 2015:e.T6834A22180239, https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6834A22180239.en

  • Martínez D, Jaksic F (1997) Selective predation on scansorial and arboreal mammals by Rufous-legged Owls (Strix rufipes) in southern Chilean rainforest. J Raptor Res 31:370–375

    Google Scholar 

  • Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mamm Evol 15:1–36

    Article  Google Scholar 

  • Meserve PL, Kelt DA, Martinez DR (1991) Geographical ecology of small mammals in continental Chile Chico, South America. J Biogeogr 18:179–187

    Article  Google Scholar 

  • Monadjem A (1999) Geographic distribution patterns of small mammals in Swaziland in relation to abiotic factors and human land-use activity. Biodivers Conserv 8:223–237

    Article  Google Scholar 

  • Mulungu LS, Makundi RH, Massawe AW, Machang’u RS, Mbije NE (2008) Diversity and distribution of rodent and shrew species associated with variations in altitude on Mount Kilimanjaro, Tanzania. Mammalia 72:178–185

    Article  Google Scholar 

  • Muñoz-Pedreros A, Lang BK, Bretos M, Meserve PL (2005) Reproduction and development of Dromiciops gliroides (Marsupialia: Microbiotheriidae) in temperate rainforests of southern Chile. Gayana 69:225–233

    Google Scholar 

  • Nespolo RF, Verdugo C, Cortés PA, Bacigalupe LD (2010) Bioenergetics of torpor in the microbiotherid marsupial, monito del monte (Dromiciops gliroides): the role of temperature and food availability. J Comp Physiol B 180:767–773

    Article  PubMed  Google Scholar 

  • Nespolo RF, Fontúrbel FE, Mejias C, Contreras R, Gutierrez P, Oda E, Sabat P, Hambly C, Speakman JR, Bozinovic F (2022) A mesocosm experiment in ecological physiology: the modulation of energy budget in a hibernating marsupial under chronic caloric restriction. Physiol Biochem Zool 95:66–81

    Article  PubMed  Google Scholar 

  • Nilsson MA, Churakov G, Sommer M, Van Tran N, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:e1000436

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris D, Michalski F, Peres CA (2010) Habitat patch size modulates terrestrial mammal activity patterns in Amazonian forest fragments. J Mammal 91:551–560

    Article  Google Scholar 

  • O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139

    Article  Google Scholar 

  • Orrock JL, Danielson BJ, Brinkerhoff RJ (2004) Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav Ecol 15:433–437

    Article  Google Scholar 

  • Pagon N, Grignolio S, Pipia A, Bongi P, Bertolucci C, Apollonio M (2013) Seasonal variation of activity patterns in roe deer in a temperate forested area. Chronobiol Int 30:772–785

    Article  PubMed  Google Scholar 

  • Palma RE, Spotorno AE (1999) Molecular systematics of marsupials based on the rRNA 12S mitochondrial gene: the phylogeny of Didelphimorphia and of the living fossil microbiotheriid Dromiciops gliroides Thomas. Mol Phylogenetics Evol 13:525–535

    Article  CAS  Google Scholar 

  • Patterson BD, Meserve PL, Lang BK (1990) Quantitative habitat associations of small mammals along an elevational transect in temperate rainforests of Chile. J Mammal 71:620–633

    Article  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing. Vienna, Austria, pp 1–10

  • Prugh LR, Golden CD (2014) Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J Anim Ecol 83:504–514

    Article  PubMed  Google Scholar 

  • Quintero-Galvis JF, Saenz-Agudelo P, Celis-Diez JL, Amico GC, Vazquez S, Shafer AB, Nespolo RF (2021) The Biogeography of Dromiciops in Southern South America: middle Miocene transgressions, speciation and associations with Nothofagus. Mol Phylogenet Evol 163:107234

    Article  PubMed  Google Scholar 

  • Ramos DL, Pizo MA, Ribeiro MC, Cruz RS, Morales JM, Ovaskainen O (2020) Forest and connectivity loss drive changes in movement behavior of bird species. Ecography 43:1203–1214

    Article  Google Scholar 

  • Rodriguez-Cabal MA, Branch LC (2011) Influence of habitat factors on the distribution and abundance of a marsupial seed disperser. J Mammal 92:1245–1252

    Article  Google Scholar 

  • Rodríguez-Cabal MA, Aizen MA, Novaro AJ (2007) Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America. Biol Conserv 139:195–202

    Article  Google Scholar 

  • Rodriguez-Cabal MA, Barrios-Garcia MN, Amico GC, Aizen MA, Sanders NJ (2013) Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proc Natl Acad Sci 110:16503–16507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Gómez GB, Fontúrbel FE (2020) Regional-scale variation on Dromiciops gliroides occurrence, abundance, and activity patterns along a habitat disturbance gradient. J Mammal 101:733–741

    Article  Google Scholar 

  • Royle JA (2005) Site occupancy models with heterogeneous detection probabilities. Biometrics 62:97–102

    Article  Google Scholar 

  • Salazar DA, Fonturbel FE (2016) Beyond habitat structure: landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees. Integr Zool 11:413–421

    Article  PubMed  Google Scholar 

  • Sieving KE, Willson MF, De Santo TL (1996) Habitat barriers to movement of understory birds in fragmented south-temperate rainforest. Auk 113:944–949

    Article  Google Scholar 

  • Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088

    Article  Google Scholar 

  • Sikes RS, Care A, Mammalogists UCotASo (2016) 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 97:663–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith-Ramirez C, Celis-Diez JL, von Jenstchyk E, Jimenez JE, Armesto JJ (2010) Habitat use of remnant forest habitats by the threatened arboreal marsupial Dromiciops gliroides (Microbiotheria) in a rural landscape of southern Chile. Wildl Res 37:249–254

    Article  Google Scholar 

  • Stokes MK, Slade NA, Blair SM (2001) Influences of weather and moonlight on activity patterns of small mammals: a biogeographical perspective. Can J Zool 79:966–972

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tiribelli F, Amico GC, Sasal Y, Morales JM (2017) The effect of spatial context and plant characteristics on fruit removal. Acta Oecol 82:69–74

    Article  Google Scholar 

  • Tobler MW, Zúñiga Hartley A, Carrillo-Percastegui SE, Powell GV (2015) Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J Appl Ecol 52:413–421

    Article  Google Scholar 

  • Uribe SV, Chiappe RG, Estades CF (2017) Persistence of Dromiciops gliroides in landscapes dominated by Pinus radiata plantations. Rev Chil De Hist Nat 90:1–5

    Article  Google Scholar 

  • Vazquez MS, Rodríguez-Cabal MA, Gonzalez DV, Pacheco GS, Amico GC (2018) Different nest predator guild associated with egg size in the Patagonian temperate forest. Bird Study 65:478–483

    Article  Google Scholar 

  • Vazquez MS, Ibarra JT, Altamirano TA (2020) Austral Opossum adjusts to life in second-growth forests by nesting outside cavities. Austral Ecol 45:1179–1182

    Google Scholar 

  • Vazquez MS, Rodriguez-Cabal MA, Amico GC (2021a) The forest gardener: a marsupial with a key seed-dispersing role in the Patagonian temperate forest. Ecol Res 37:270–283

    Article  Google Scholar 

  • Vazquez MS, Zamora-Nasca LB, Rodriguez-Cabal MA, Amico GC (2021b) Interactive effects of habitat attributes and predator identity explain avian nest predation patterns. Emu 121:250–260

    Article  Google Scholar 

  • Vazquez MS, Ripa R, Rodriguez-Cabal M, Amico GC (2022) Potential distribution and conservation implications of key marsupials for the Patagonian temperate forest. Mamm Biol. https://doi.org/10.1007/s42991-022-00322-7

    Article  Google Scholar 

  • Veblen T, Donoso C, Kitzberger T, Rebertus A (1996) Ecology of southern Chilean and Argentinean Nothofagus forests The ecology and biogeography of Nothofagus forests (TT Veblen, RS Hill, and J. Read, editors). Yale University Press, New Haven, UK, pp 293–353

  • Wauters L, Swinnen C, Dhondt A (1992) Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J Zool 227:71–86

    Article  Google Scholar 

  • Weerakoon MK, Ruffino L, Cleary GP, Heavener S, Bytheway JP, Smith HM, Banks PB (2014) Can camera traps be used to estimate small mammal population size. In: Fleming P, Meek P, Banks PB, Claridge A, Sanderson J, Swann D (eds) Camera trapping: wildlife management and research. CSIRO Publishing, Collingwood

    Google Scholar 

  • Zipkin EF, DeWan A, Andrew Royle J (2009) Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J Appl Ecol 46:815–822

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the volunteers who participated in the fieldwork. We also thank the National Parks Administration, Secretary of the Environment of Río Negro, and Arelauquen Golf & Country Club for granting permits to work in the area. We are grateful to Idea Wild foundation for granting equipment and to Juan Manuel Morales and the course entitled “Modelos en Ecología” for the discussions about our data analysis. We also thank Soham Mehta for his English edition, and Ricardo Sage and Francisco Fonturbel for providing comments and suggestions that helped to improve the quality of the manuscript.

Funding

Partial financial support was received from Conicet (Comision Nacional de Investigaciones cientificas y tecnicas).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization. MSV y GA participated in the study conception and design. Material preparation and data collection were performed by MSV, and data analysis was performed by LS. The first draft of the manuscript was written by MSV and all authors commented, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Soledad Vazquez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Raquel Monclús.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez, M.S., Schenone, L., Rodriguez-Cabal, M.A. et al. Modeling spatio-temporal activity dynamics of the small relict marsupial Dromiciops gliroides. Mamm Biol 103, 1–12 (2023). https://doi.org/10.1007/s42991-022-00331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-022-00331-6

Keywords

Navigation