Skip to main content
Log in

Transport equations with inflow boundary conditions

  • Original Research Article
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We provide bounds in a Sobolev-space framework for transport equations with nontrivial inflow and outflow. We give, for the first time, bounds on the gradient of the solution with the type of inflow boundary conditions that occur in Poiseuille flow. Following ground-breaking work of the late Charles Amick, we name a generalization of this type of flow domain in his honor. We prove gradient bounds in Lebesgue spaces for general Amick domains which are crucial for proving well posedness of the grade-two fluid model. We include a complete review of transport equations with inflow boundary conditions, providing novel proofs in most cases. To illustrate the theory, we review and extend an example of Bernard that clarifies the singularities of solutions of transport equations with nonzero inflow boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amick, C.J.: Steady solutions of the Navier–Stokes equations in unbounded channels and pipes. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 4(3), 473–513 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Bernard, J.-M.: Solutions globales variationnelles et classiques des fluides de grade deux. Comptes Rendus de l’Academie des Sciences - Series I - Mathematics 327, 953–958 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Bernard, J.-M.: Problem of second grade fluids in convex polyhedrons. SIAM J. Math. Anal. 44(3), 2018–2038 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bernard, J.-M.: Steady transport equation in the case where the normal component of the velocity does not vanish on the boundary. SIAM J. Math. Anal. 44(2), 993–1018 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bernard, J.-M.: Solutions in $H^1$ of the steady transport equation in a bounded polygon with a full non-homogeneous velocity. Journal de Mathématiques Pures et Appliquées 107(6), 697–736 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bernard, J.-M.: Fully nonhomogeneous problem of two-dimensional second grade fluids. Math. Methods Appl. Sci. 41(16), 6772–6792 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, third Springer, Berlin (2008)

    Book  Google Scholar 

  8. Choudhury, A.P., Crippa, G., Spinolo, L.V.: Initial-boundary value problems for nearly incompressible vector fields, and applications to the Keyfitz and Kranzer system. Zeitschrift für angewandte Mathematik und Physik 68(6), 138 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cioranescu, D., Girault, V., Rajagopal, K.R.: Mechanics and Mathematics of Fluids of the Differential Type. Springer, Berlin (2016)

    Book  Google Scholar 

  10. Girault, V., Scott, L.R.: Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78, 981–1011 (1999)

    Article  MathSciNet  Google Scholar 

  11. Girault, V., Scott, L.R.: On a time-dependent transport equation in a Lipschitz domain. SIAM J. Math. Anal. 42, 1721–1731 (2010)

    Article  MathSciNet  Google Scholar 

  12. Girault, V., Scott, L.R.: Oldroyd models without explicit dissipation. Rev. Roumaine Math. Pures Appl. 63(4), 401–446 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Girault, V., Scott, L.R.: Tanner duality between the Oldroyd–Maxwell and grade-two fluid models. Comptes Rendus—Mathématique 359(9), 1207–1215 (2021)

  14. Girault, V., Tartar, L.: Régularité dans $L^p$ et $W^{1, p}$ de la solution d’une équation de transport stationnaire. Comptes Rendus. Mathématique 348(15–16), 885–890 (2010)

    Article  Google Scholar 

  15. Lodge, A.S., Pritchard, W.G., Scott, L.R.: The hole-pressure problem. IMA J. Appl. Math. 46, 39–66 (1991)

    Article  MathSciNet  Google Scholar 

  16. Mucha, P.B., Piasecki, T.: Stationary compressible Navier–Stokes equations with inflow condition in domains with piecewise analytical boundaries. Pure Appl Anal 2(1), 123–155 (2019)

    Article  MathSciNet  Google Scholar 

  17. Nyström, M., Tamaddon Jahromi, H.R., Stading, M., Webster, M.F.: Hyperbolic contraction measuring systems for extensional flow. Mech. Time Depend. Mater. 21(3), 455–479 (2017)

    Article  Google Scholar 

  18. Oliveira, P.J., Pinho, F.T.: Analytical solution for fully developed channel and pipe flow of Phan–Thien–Tanner fluids. J. Fluid Mech. 387, 271–280 (1999)

    Article  MathSciNet  Google Scholar 

  19. Otárola,E., Salgado, A.J.: On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra. Numerische Mathematik (2022)

  20. Phan-Then, N., Tanner, R.I.: A new constitutive equation derived from network theory. J. Non Newton. Fluid Mech. 2(4), 353–365 (1977)

    Article  Google Scholar 

  21. Piasecki, T.: Steady transport equation in Sobolev–Slobodetskii spaces. Colloq. Mathemat. 154, 65–76 (2018)

    Article  MathSciNet  Google Scholar 

  22. Pollock, S., Scott, L.R.: An algorithm for the grade-two rheological model. M2AN (accepted) (2022)

  23. Pritchard, W.G.: Measurements of the viscometric functions for a fluid in steady shear flows. Philos. Trans. R. Soc. Lond Ser. A 302 270(1208), 507–556 (1971)

    Article  Google Scholar 

  24. Schwartz, L.: Théorie des distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  25. Scott, L.R.: Introduction to Automated Modeling with FEniCS. Computational Modeling Initiative (2018)

  26. Tanner, R.I.: The stability of some numerical schemes for model viscoelastic fluids. J. Non Newton. Fluid Mech. 10, 169–174 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

SP is supported in part by the National Science Foundation NSF DMS-2011519. We thank the referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ridgway Scott.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Spaces

Spaces

Here we collect the notation used for various Sobolev spaces and norms. We denote by \(L^p(\Omega )\) the Lebesgue spaces [7] of p-th power integrable functions, with norm

$$\begin{aligned} \Vert \, f \,\Vert _{L^p(\Omega )}=\bigg (\int _{\Omega } |f({{\mathbf {x}}})|^p \, dx\bigg )^{1/p}. \end{aligned}$$

Note that we can easily apply the same notation to vector or tensor valued f. We think of tensors of any arity as vectors of the appropriate length, and we think of \(|f({{\mathbf {x}}})|\) as the Euclidean length of this vector. For tensors of arity 2 (i.e., matrices) this is the same as the Frobenius norm. We will write the spaces for such tensor-valued functions as \(L^p(\Omega )^m\) for the appropriate m (e.g., \(m=d^2\) for arity 2). Similarly, we denote by \(L^\infty (\Omega )\) the Lebesgue space of essentially bounded functions, with

$$\begin{aligned} \Vert \, f \,\Vert _{L^\infty (\Omega )}=\sup \left\{ |f({{\mathbf {x}}})| \; \big | \; \hbox {a.e.}\;{{\mathbf {x}}}\in \Omega \right\} . \end{aligned}$$

Correspondingly, we define Sobolev spaces and norms of order m by

$$\begin{aligned} \Vert \, f \,\Vert _{W^m_p(\Omega )}=\bigg (\sum _{|\alpha |\le m}\Vert \, D^\alpha f \,\Vert _{L^p(\Omega )}^p\bigg )^{1/p}, \end{aligned}$$

where \(D^\alpha \) is the weak derivative \(\partial ^\alpha /\partial {{\mathbf {x}}}^{|\alpha |}\) [7]. More precisely, the spaces \(W^m_p(\Omega )\) are defined as the subspaces of \(L^p(\Omega )\) for which the corresponding norm is finite. The case \(p=2\) is denoted by H:

$$\begin{aligned} H^m(\Omega )=W^m_2(\Omega ). \end{aligned}$$

Correspondingly, we define

$$\begin{aligned} \Vert \, \nabla ^m f \,\Vert _{L^p(\Omega )}= \bigg (\sum _{|\alpha |= m}\Vert \, D^\alpha f \,\Vert _{L^p(\Omega )}^p\bigg )^{1/p}. \end{aligned}$$

Note that

$$\begin{aligned} \Vert \, f \,\Vert _{W^1_p(\Omega )}\le \Vert \, f \,\Vert _{L^p(\Omega )}+\Vert \, \nabla f \,\Vert _{L^p(\Omega )} \le 2^{(p-1)/p)} \Vert \, f \,\Vert _{W^1_p(\Omega )}. \end{aligned}$$
(69)

We will briefly use the space \(H^1_0(\Omega )\) of \(f\in H^1(\Omega )\) such that \(f=0\) on \(\partial \Omega \). The dual space \(H^{-1}(\Omega )^d\) is the set of Schwartz distributions [24] for which the dual norm

$$\begin{aligned} \Vert \, {{\mathbf {u}}} \,\Vert _{H^{-1}(\Omega )}=\sup _{\mathbf{0}\ne {\varvec{\phi }}\in H^1_0(\Omega )^d} \frac{\langle {{\mathbf {u}}}\cdot {\varvec{\phi }}\rangle }{\Vert \, {\varvec{\phi }} \,\Vert _{H^{1}(\Omega )}} \end{aligned}$$

is finite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, L.R., Pollock, S. Transport equations with inflow boundary conditions. Partial Differ. Equ. Appl. 3, 35 (2022). https://doi.org/10.1007/s42985-022-00169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-022-00169-0

Mathematics Subject Classification

Navigation