Skip to main content
Log in

Newton’s second law with a semiconvex potential

  • Review Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We make the elementary observation that the differential equation associated with Newton’s second law \(m\ddot{\gamma }(t)=-D V(\gamma (t))\) always has a solution for given initial conditions provided that the potential energy V is semiconvex. That is, if \(-D V\) satisfies a one-sided Lipschitz condition. We will then build upon this idea to verify the existence of solutions for the Jeans-Vlasov equation, the pressureless Euler equations in one spatial dimension, and the equations of elastodynamics under appropriate semiconvexity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Basel (2008)

  2. Ambrosio, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18–53 (2008)

    Article  MathSciNet  Google Scholar 

  3. Andrews, G., Ball, J.M.: Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity. J. Differ. Equations 44(2), 306–341 (1982) (Special issue dedicated to J. P. LaSalle)

  4. Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. A Wiley-Interscience Publication, Wiley, New York (1999)

  6. Bolley, F.: Separability and completeness for the Wasserstein distance. In: Séminaire de probabilités XLI. Lecture Notes in Math, vol. 1934, pp. 371–377. Springer, Berlin (2008)

  7. Brenier, Y., Gangbo, W., Savaré, G., Westdickenberg, M.: Sticky particle dynamics with interactions. J. Math. Pures Appl. (9) 99(5), 577–617 (2013)

    Article  MathSciNet  Google Scholar 

  8. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998)

    Article  MathSciNet  Google Scholar 

  9. Carstensen, C., Rieger, M.O.: Young-measure approximations for elastodynamics with non-monotone stress-strain relations. M2AN Math. Model. Numer. Anal. 38(3), 397–418 (2004)

    Article  MathSciNet  Google Scholar 

  10. Cavalletti, F., Sedjro, M., Westdickenberg, M.: A simple proof of global existence for the 1D pressureless gas dynamics equations. SIAM J. Math. Anal. 47(1), 66–79 (2015)

    Article  MathSciNet  Google Scholar 

  11. Demoulini, S.: Young measure solutions for nonlinear evolutionary systems of mixed type. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(1), 143–162 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dermoune, A.: Probabilistic interpretation of sticky particle model. Ann. Probab. 27(3), 1357–1367 (1999)

    Article  MathSciNet  Google Scholar 

  13. E, W., Rykov, Y., Sinai, Y.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177(2), 349–380 (1996)

    Article  MathSciNet  Google Scholar 

  14. Emmrich, E., Šiška, D.: Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization. J. Differ. Equations 255(10), 3719–3746 (2013)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C.: Partial differential equations, vol. 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2010)

  16. Feireisl, E., Petzeltová, H.: Global existence for a quasi-linear evolution equation with a non-convex energy. Trans. Am. Math. Soc. 354(4), 1421–1434 (2002)

    Article  MathSciNet  Google Scholar 

  17. Folland, G.: Real analysis. Pure and Applied Mathematics (New York). Modern techniques and their applications, 2nd edn. A Wiley-Interscience Publication, Wiley, New York (1999)

  18. Friesecke, G., Dolzmann, G.: Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy. SIAM J. Math. Anal. 28(2), 363–380 (1997)

    Article  MathSciNet  Google Scholar 

  19. Gangbo, W., Nguyen, T., Tudorascu, A.: Euler-Poisson systems as action-minimizing paths in the Wasserstein space. Arch. Ration. Mech. Anal. 192(3), 419–452 (2009)

    Article  MathSciNet  Google Scholar 

  20. Guo, Y., Han, L., Zhang, J.: Absence of shocks for one dimensional Euler-Poisson system. Arch. Ration. Mech. Anal. 223(3), 1057–1121 (2017)

    Article  MathSciNet  Google Scholar 

  21. Hale, J.K.: Ordinary Differential Equations, 2nd edn. Robert E. Krieger Publishing Co., Inc, Huntington (1980)

    MATH  Google Scholar 

  22. Hynd, R.: Lagrangian coordinates for the sticky particle system. SIAM J. Math. Anal. 51(5), 3769–3795 (2019)

    Article  MathSciNet  Google Scholar 

  23. Hynd, R.: A trajectory map for the pressureless Euler equations. Trans. Am. Math. Soc. 373(10), 6777–6815 (2020)

    Article  MathSciNet  Google Scholar 

  24. Jabin, P.-E.: A review of the mean field limits for Vlasov equations. Kinet. Relat. Models 7(4), 661–711 (2014)

    Article  MathSciNet  Google Scholar 

  25. Jin, C.: Well posedness for pressureless Euler system with a flocking dissipation in Wasserstein space. Nonlinear Anal. 128, 412–422 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kim, H.K.: Moreau–Yosida approximation and convergence of Hamiltonian systems on Wasserstein space. J. Differ. Equations 254(7), 2861–2876 (2013)

    Article  MathSciNet  Google Scholar 

  27. LeFloch, P., Xiang, S.: Existence and uniqueness results for the pressureless Euler-Poisson system in one spatial variable. Port. Math. 72(2–3), 229–246 (2015)

    Article  MathSciNet  Google Scholar 

  28. Natile, L., Savaré, G.: A Wasserstein approach to the one-dimensional sticky particle system. SIAM J. Math. Anal. 41(4), 1340–1365 (2009)

    Article  MathSciNet  Google Scholar 

  29. Nguyen, H.T., Paczka, D.: Weak and Young measure solutions for hyperbolic initial boundary value problems of elastodynamics in the Orlicz–Sobolev space setting. SIAM J. Math. Anal. 48(2), 1297–1331 (2016)

    Article  MathSciNet  Google Scholar 

  30. Nguyen, T., Tudorascu, A.: Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws. SIAM J. Math. Anal. 40(2), 754–775 (2008)

    Article  MathSciNet  Google Scholar 

  31. Prohl, A.: Convergence of a finite element-based space-time discretization in elastodynamics. SIAM J. Numer. Anal. 46(5), 2469–2483 (2008)

    Article  MathSciNet  Google Scholar 

  32. Rieger, M.O.: Young measure solutions for nonconvex elastodynamics. SIAM J. Math. Anal. 34(6), 1380–1398 (2003)

    Article  MathSciNet  Google Scholar 

  33. Rybka, P.: Dynamical modelling of phase transitions by means of viscoelasticity in many dimensions. Proc. R. Soc. Edinb. Sect. A 121(1–2), 101–138 (1992)

    Article  MathSciNet  Google Scholar 

  34. Shen, C.: The Riemann problem for the pressureless Euler system with the Coulomb-like friction term. IMA J. Appl. Math. 81(1), 76–99 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge that the results verified below are not all new. The existence of weak solutions to Jeans-Vlasov equation with a semiconvex interaction potential was essentially obtained by Ambrosio and Gangbo [2]; in a recent paper which motivated this study [23], we verified the existence of solutions of the pressureless Euler system in one spatial dimension with a semiconvex interaction potential; Demoulini [11] established the existence of measure-valued solutions to the equations of elastodynamics with nonconvex stored energy; and the existence of weak solutions of the corresponding perturbed system was verified by Dolzmann and Friesecke [18]. Nevertheless, we contend that our approach to verifying existence is unifying. In particular, we present a general method to address the existence of weak and measure-valued solutions of hyperbolic evolution equations when the underlying nonlinearity is appropriately semiconvex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Hynd.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

R. Hynd: Partially supported by NSF grant DMS-1554130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hynd, R. Newton’s second law with a semiconvex potential. Partial Differ. Equ. Appl. 3, 11 (2022). https://doi.org/10.1007/s42985-021-00136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-021-00136-1

Mathematics Subject Classification

Navigation