Skip to main content
Log in

Speckle Noise Removal: A Local Structure Preserving Approach

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This paper proposes a speckle noise removal approach for clinical ultrasound images by doing outlier removal and smoothening operations alternately. During the initial investigation, it was found that the log-transformed ultrasound image follows Fisher–Tippett distribution and has fixed median absolute deviation (MAD). Hence, the noise in log-transformed ultrasound images behaves like white Gaussian noise with transients or outliers. Therefore, the de-noising problem can be considered as the removal of outliers followed by smoothening. These two processes are unified in one framework by defining a Bayesian Maximum-a-Posteriori (MAP) estimation function. This function has two terms: fidelity and regularizer. The fidelity is derived using the proposed generalized Fisher–Tippett distribution, whereas a weighted total variation is used as a regularizer. A regularizer weigh scheme is introduced to preserve edges in the images. The weights are computed using echo-texture graded local-oriented structure information present in an image. To obtain tissue-specific echo-texture, fuzzy C-means clustering is deployed for grouping similar tissue echo-textures. This grouping will help to discriminate the proper boundary of the tissue. To extract the original image, the MAP function is minimized and is performed using the generalized Bregman alternate method of multipliers. Ten different existing techniques are used to compare the performance of the proposed method on both phantom and clinical ultrasound images. The proposed approach achieved a signal-to-noise ratio in the range of 5–10 and a peak signal-to-noise ratio in the range of 67–70. Structural preservation metrics like figure of merit came out to be as high as 0.8. Moreover, using the proposed approach lower signal suppression index and higher effective number of lookup values are achieved for the restored clinical ultrasound images. The proposed algorithm can provide better piecewise smoothness and high contrast in despeckled images. Along with it, the edges are seen to be well preserved. Both qualitative and quantitative analysis support the efficacy of the approach compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Afonso M, Sanches JM. Image reconstruction under multiplicative speckle noise using total variation. Neurocomputing. 2015;150(Part A):200–13.

    Article  Google Scholar 

  2. Aubert G, Aujol JF. A variational approach to removing multiplicative noise. SIAM J Appl Math. 2008;68(4):925–46.

    Article  MathSciNet  Google Scholar 

  3. Balocco S, Gatta C, Pujol O, et al. SRBF: speckle reducing bilateral filtering. Ultrasound Med Biol. 2010;36(8):1353–63.

    Article  Google Scholar 

  4. Barndorff-Nielsen O, Cox D. Asymptotic techniques for use in statistics. London: Chapman & Hall; 1989.

    Book  Google Scholar 

  5. Bioucas-Dias J, Figueiredo M. Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans Image Process. 2010;19(7):1720–30.

    Article  MathSciNet  Google Scholar 

  6. Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis. 2004;20(1–2):89–97.

    MathSciNet  Google Scholar 

  7. Chen Y, Guo Z. Transpeckle: an edge-protected transformer for medical ultrasound image despeckling. IET Image Process. 2023;17(14):4014–27.

    Article  Google Scholar 

  8. Coupé P, Hellier P, Kervrann C, et al. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image Process. 2009;18(10):2221–9.

    Article  MathSciNet  Google Scholar 

  9. Dellepiane S, Angiati E. Quality assessment of despeckled SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;7(2):691–707.

    Article  Google Scholar 

  10. Dutt V, Greenleaf JF. Ultrasound echo envelope analysis using a homodyned K distribution signal model. Ultrason Imaging. 1994;16(4):265–87.

    Article  Google Scholar 

  11. Dutt V, Greenleaf JF. Adaptive speckle reduction filter for log-compressed b-scan images. IEEE Trans Med Imaging. 1996;15(6):802–13.

    Article  Google Scholar 

  12. El Hamidi A, Ménard M, Lugiez M, et al. Weighted and extended total variation for image restoration and decomposition. Pattern Recognit. 2010;43(4):1564–76.

    Article  Google Scholar 

  13. Feng W, Lei H, Gao Y. Speckle reduction via higher order total variation approach. IEEE Trans Image Process. 2014;23(4):1831–43.

    Article  MathSciNet  Google Scholar 

  14. Ghosh A, Pal NR, Pal SK. Self-organization for object extraction using a multilayer neural network and fuzziness measures. IEEE Trans Fuzzy Syst. 1993;1(1):54–68.

    Article  Google Scholar 

  15. Ghosh A, Subudhi BN, Ghosh S. Object detection from videos captured by moving camera by fuzzy edge incorporated Markov random field and local histogram matching. IEEE Trans Circuits Syst Video Technol. 2012;22(8):1127–35.

    Article  Google Scholar 

  16. Goodman JW. Some fundamental properties of speckle. J Opt Soc Am. 1976;66(11):1145–50.

    Article  Google Scholar 

  17. Gorai A, Ghosh A. Hue-preserving color image enhancement using particle swarm optimization. In: 2011 IEEE recent advances in intelligent computational systems; 2011. p. 563–568.

  18. Huang YM, Ng MK, Wen YW. A new total variation method for multiplicative noise removal. SIAM J Imaging Sci. 2009;2(1):20–40.

    Article  MathSciNet  Google Scholar 

  19. Jain AK. Fundamentals of digital image processing. Upper Saddle River: Prentice-Hall, Inc.; 1989.

    Google Scholar 

  20. Kang M, Kang M, Jung M. Total generalized variation based denoising models for ultrasound images. J Sci Comput. 2017;72:172–97.

    Article  MathSciNet  Google Scholar 

  21. Kokil P, Sudharson S. Despeckling of clinical ultrasound images using deep residual learning. Comput Methods Programs Biomed. 2020;194: 105477.

    Article  Google Scholar 

  22. Krissian K, Westin CF, Kikinis R, et al. Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process. 2007;16(5):1412–24.

    Article  MathSciNet  Google Scholar 

  23. Li SZ. Markov random field modeling in image analysis. London: Springer Science & Business Media; 2009.

    Google Scholar 

  24. Loizou CP, Pattichis CS. Despeckle filtering of ultrasound images. In: Atherosclerosis disease management. Springer; 2011. p. 153–194.

  25. Michailovich O, Adam D. Robust estimation of ultrasound pulses using outlier-resistant de-noising. IEEE Trans Med Imaging. 2003;22(3):368–81.

    Article  Google Scholar 

  26. Michailovich OV, Tannenbaum A. Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(1):64–78.

    Article  Google Scholar 

  27. Pedraza L, Vargas C, Narvaez F, et al. An open access thyroid ultrasound image database. In: Proceeding of SPIE, vol. 9287. 2015. p. 92870W–92870W-6.

  28. Petrusca L, Cattin P, De Luca V, et al. Hybrid ultrasound/ magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen. Invest Radiol. 2013;48(5):333–40.

    Article  Google Scholar 

  29. Qiu C, Huang Z, Lin C, et al. A despeckling method for ultrasound images utilizing content-aware prior and attention-driven techniques. Comput Biol Med. 2023;166: 107515.

    Article  Google Scholar 

  30. Rajabi M, Golshan H, Hasanzadeh RP. Non-local adaptive hysteresis despeckling approach for medical ultrasound images. Biomed Signal Process Control. 2023;85: 105042.

    Article  Google Scholar 

  31. Rakshit S, Ghosh A, Shankar BU. Fast mean filtering technique (fmft). Pattern Recognit. 2007;40(3):890–7.

    Article  Google Scholar 

  32. Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Martin-Fernandez M, et al. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans Image Process. 2015;24(1):345–58.

    Article  MathSciNet  Google Scholar 

  33. Rangayyan RM. Biomedical image analysis. Boca Raton: CRC Press; 2004.

    Book  Google Scholar 

  34. Riha K, Masek J, Burget R, et al. Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector. Ultrasound Med Biol. 2013;39(10):1887–902.

    Article  Google Scholar 

  35. Rosenfeld A. Digital picture processing. Academic Press; 1976.

    Google Scholar 

  36. Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J Am Stat Assoc. 1993;88(424):1273–83.

    Article  MathSciNet  Google Scholar 

  37. Roy R, Ghosh S, et al. Speckle de-noising with local oriented structure for edge preservation in ultrasound images. In: Ghosh A, King I, Bhattacharyya M, et al., editors. 9th international conference on pattern recognition and machine intelligence, PReMI 2021 (to be published). Cham: Springer; 2021.

  38. Roy R, Ghosh S, Cho SB, et al. Despeckling with structure preservation in clinical ultrasound images using historical edge information weighted regularizer. In: Ghosh A, Pal R, Prasath R, editors., et al., Mining intelligence and knowledge exploration. Cham: Springer; 2017. p. 144–55.

    Chapter  Google Scholar 

  39. Shankar PM. A general statistical model for ultrasonic backscattering from tissues. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(3):727–36.

    Article  Google Scholar 

  40. Shankar PM. Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(6):1716–20.

    Article  Google Scholar 

  41. Steidl G, Teuber T. Removing multiplicative noise by Douglas-Rachford splitting methods. J Math Imaging Vis. 2010;36(2):168–84.

    Article  MathSciNet  Google Scholar 

  42. Tobon-Gomez C, De Craene M, Mcleod K, et al. Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med Image Anal. 2013;17(6):632–48.

    Article  Google Scholar 

  43. Wang H, Banerjee A. Bregman alternating direction method of multipliers. In: Advances in neural information processing systems; 2014. p. 2816–24.

  44. Wu Y, Feng X. Speckle noise reduction via nonconvex high total variation approach. Math Probl Eng. 2015;2015:1–11.

    MathSciNet  Google Scholar 

  45. Yang J, Fan J, Ai D, et al. Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing. 2016;195:88–95.

    Article  Google Scholar 

  46. Yu C, Zhang C, Xie L. A multiplicative Nakagami speckle reduction algorithm for ultrasound images. Multidimension Syst Signal Process. 2012;23(4):499–513.

    Article  MathSciNet  Google Scholar 

  47. Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process. 2002;11(11):1260–70.

    Article  MathSciNet  Google Scholar 

  48. Zhu Y. An augmented ADMM algorithm with application to the generalized Lasso problem. J Comput Graph Stat. 2017;26(1):195–204.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like thank Prof. Acton for providing the permission to use the prostrate image for experimentation. We also express our gratitude to Prof. Rhode and Prof. Gomez for providing the cardiac motion tracking dataset from where two cardiac slices are used in the experiments.The authors are grateful to the Ministry of Electronics and Information Technology (MeitY), Govt. of India for supporting a part of this research through sanctioning a research project (File No 4(16)/2019-ITEA dtd. 28.02.20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Roy.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Pattern Recognition and Machine Learning” guest edited by Ashish Ghosh, Monidipa Das and Anwesha Law.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Let us assume that N follows Nakagami distribution given by

$$\begin{aligned} {p_N}(\eta ) = \frac{{2{m^m}}}{{\Gamma (m){\Omega ^m}}}{\eta ^{2m - 1}}{e^{\frac{m}{\Omega }{\eta ^2}}},\quad \eta > 0. \end{aligned}$$
(37)

Then applying log transformation to noise, we have the form

$$\begin{aligned} W=D\ln N. \end{aligned}$$

This can be rewritten as

$$\begin{aligned} W=\ln N^{\frac{1}{s}}, \end{aligned}$$

where \(s=\frac{1}{D}\).

According to [40], if N follows Nakagami distribution, then \(H=N^{\frac{1}{s}}\) will follow generalized Nakagami distribution given by

$$\begin{aligned} {p_H}(h) = \frac{{2s{m^m}}}{{\Gamma (m){\Omega ^m}}}{h^{2sm - 1}}{e^{\frac{m}{\Omega }{h^{2s}}}},\quad h > 0, \end{aligned}$$

where m, s and \(\Omega\) are shape, correction factor and scaling parameters of the distribution respectively. h is the value at the \(\textbf{x}\)th location of H.

Thus for \(W=\ln H\), the probability distribution is given by

$$\begin{aligned} {p_W}(w) = \frac{{{P_w}({W^{ - 1}})}}{{\left| {\frac{{dw}}{{dh}}} \right| }}, \end{aligned}$$

or

$$\begin{aligned} {p_W}(w)& = {} \frac{{2s{m^m}}}{{\Gamma (m){\Omega ^m}}}{\left( {{e^w}} \right) ^{2sm}}{e^{ - \frac{m}{\Omega }{{\left( {{e^w}} \right) }^{2s}}}}\\& = {} \frac{{2s{m^m}}}{{\Gamma (m)}}{e^{\left[ {\ln \left[ {{{\left( {\frac{1}{\Omega }{e^{2sw}}} \right) }^m}{e^{ - {\hspace{1.0pt}} \frac{m}{\Omega }{e^{2sw}}}}} \right] } \right] }}\\& = {} \frac{{2s{m^m}}}{{\Gamma (m)}}{e^{\left[ {\left[ {m\left( {2sw - \ln \Omega } \right) {\hspace{1.0pt}} \, - {\hspace{1.0pt}} \frac{m}{{{e^{\ln \Omega }}}}{e^{2sw}}} \right] } \right] }}\\& = {} \frac{{2s{m^m}}}{{\Gamma (m)}}{e^{\left[ {m\left( {2sw - \ln \Omega } \right) {\hspace{1.0pt}} \, - {\hspace{1.0pt}} m\left( {{e^{\left( {2sw - \ln \Omega } \right) }}} \right) } \right] .}} \end{aligned}$$

It is known from Stirling’s formulae [4] that \(\Gamma (m+1)={\sqrt{2\pi m} {{\left( {\frac{m}{e}} \right) }^m}}\). Thus substituting it, we get

$$\begin{aligned} {p_W}(w)& = {} \frac{{2s{m^{m + 1}}}}{{\sqrt{2\pi m} {{\left( {\frac{m}{e}} \right) }^m}}}{e^{\left[ {m\left( {2sw - \ln \Omega } \right) {\hspace{1.0pt}} \, - {\hspace{1.0pt}} m\left( {{e^{\left( {2sw - \ln \Omega } \right) }}} \right) } \right] }}\\& = {} \frac{{2sm}}{{\sqrt{2\pi m} \left( {\frac{1}{{{e^m}}}} \right) }}{e^{\left[ {m\left( {2sw - \ln \Omega } \right) {\hspace{1.0pt}} \, - {\hspace{1.0pt}} m\left( {{e^{\left( {2sw - \ln \Omega } \right) }}} \right) } \right] }}\\& = {} \frac{{2s{e^m}}}{{\sqrt{\frac{{2\pi }}{m}} }}{e^{m\left[ {\left( {2sw - \ln \Omega } \right) {\hspace{1.0pt}} \, - \left( {{e^{\left( {2sw - \ln \Omega } \right) }}} \right) } \right] }} \end{aligned}$$

which is of the form defined in Eq. (6).

On rearranging the terms in Eq. (6),we get

$$\begin{aligned} {p_W}(w) = \frac{{2s}}{{\sqrt{\frac{{2\pi }}{m}} }}{e^{m\left[ 1+{\left( {2sw - \ln \Omega } \right) - {e^{\left( {2sw - \ln \Omega } \right) }}} \right] }}. \end{aligned}$$

Replacing the second term of the exponential distribution with the first three terms of Taylor series, we have

$$\begin{aligned} {p_W}(w) \simeq \frac{{2s}}{{\sqrt{\frac{{2\pi }}{m}} }}{e^{ - \frac{m}{2}\left[ {{{\left( {2sy - \ln \Omega } \right) }^2}} \right] }}. \end{aligned}$$

Here \(\Omega\) is the power of the signal. With image intensity into consideration, the power can be defined as \(2\sigma ^2\) [46]. Thus,

$$\begin{aligned} {p_W}(w)& = {} \frac{{2s}}{{\sqrt{\frac{{2\pi }}{m}} }}{e^{ - \frac{m}{2}\left[ {{{\left( {2sy - \ln 2\sigma ^2 } \right) }^2}} \right] }}\\& = {} \frac{{2s}}{{\sqrt{\frac{{2\pi }}{m}} }}{e^{ - \frac{m}{2}\left[ {\frac{{{{\left( {sy - \ln \sqrt{2} \sigma } \right) }^2}}}{{0.25}}} \right] }}\\& = {} \frac{1}{{\sqrt{\frac{{2\pi 0.25 }}{{m{s^2}}}} }}{e^{ - \frac{1}{2}\left[ {\frac{{{{\left( {y - \frac{1}{s}\ln \sqrt{2} \sigma } \right) }^2}}}{{\frac{{0.25}}{{m{s^2}}}}}} \right] .}} \end{aligned}$$

This form of the pdf is the same as the pdf of Gaussian distribution with mean \(\mu _w=ln\sqrt{2}\sigma\) and variance \({\sigma _w}^2=\frac{0.25}{ms^2}\). On careful analysis of the variance, it can be written as \(\sigma _w=\frac{1}{\sqrt{ms^2}}MAD\) [36] where \(MAD=0.5\). Thus we conclude that the transformed noise has constant median absolute deviation independent of the underlying scattering condition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Ghosh, S. & Ghosh, A. Speckle Noise Removal: A Local Structure Preserving Approach. SN COMPUT. SCI. 5, 367 (2024). https://doi.org/10.1007/s42979-024-02655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02655-1

Keywords

Navigation