Skip to main content
Log in

PRAY So You Don’t Become Prey

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Cloned journals refer to deceptive or counterfeit scientific journals that imitate genuine scholarly publications with the intention of misleading scholars into submitting their works. As early career researchers fall prey to these hijacked/cloned journals, research in this direction is important. In this paper, we present “PRAY—Published Research Attestation sYstem”, to validate the research papers published in a journal. We develop a novel random number generator to generate a journal secret key (jsk) based on satellite beacon signals. HMAC of ISSN number with manuscript DOI using keyed jsk; attestation code (ACODE) is generated. This attestation code is used to verify and attest the validity of the genuine publication. The system is tested and validated through verification in Scopus database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data used in this research are available with the authors.

References

  1. University Grand Commission UGC CARE—List of cloned journals Group I. Available https://ugccare.unipune.ac.in/Apps1/User/Web/CloneJournals Accessed 5 Aug 2023.

  2. University Grand Commission UGC CARE—List of cloned journals Group II. Available: https://ugccare.unipune.ac.in/Apps1/User/Web/CloneJournalsGroupII. Accessed 5 Aug 2023.

  3. University Grand Commission UGC CARE—List of cloned journals Group I. Available: https://ugccare.unipune.ac.in/Apps1/User/Web/CloneJournalsNew. Accessed 5 Aug 2023.

  4. Asim Z, Sorooshian S. Clone journals: a threat to medical research. Sao Paulo Med J. 2019;137(6):550–1. https://doi.org/10.1590/1516-3180.2018.0370160919.

    Article  PubMed  Google Scholar 

  5. Jalalian M, Dadkhah M. The full story of 90 hijacked journals from August 2011 to June 2015. Geogr Pannon. 2015. https://doi.org/10.5937/GeoPan1502073J.

    Article  Google Scholar 

  6. Dadkhah M, Maliszewski T, Teixeira da Silva JA. Hijacked journals, hijacked web-sites, journal phishing, misleading metrics, and predatory publishing: actual and potential threats to academic integrity and publishing ethics. Forensic Sci Med Pathol. 2016;12(3):353–62. https://doi.org/10.1007/s12024-016-9785-x.

    Article  PubMed  Google Scholar 

  7. Dadkhah M, Borchardt G. Hijacked journals: an emerging challenge for scholarly publishing. Aesthetic Surg J. 2016;36(6):739–41. https://doi.org/10.1093/asj/sjw026.

    Article  Google Scholar 

  8. Moussa S. A ‘Trojan horse’ in the reference lists: Citations to a hijacked journal in SSCI-indexed marketing journals. J Acad Librariansh. 2021;47(5):102388. https://doi.org/10.1016/j.acalib.2021.102388002E.

    Article  Google Scholar 

  9. Dadkhah M, Maliszewski T, Jazi MD. Characteristics of hijacked journals and predatory publishers: our observations in the academic world. Trends Pharmacol Sci. 2016;37(6):415–8. https://doi.org/10.1016/j.tips.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  10. Asadi A, Rahbar N, Asadi M, Asadi F, Khalili Paji K. Online-based approaches to identify real journals and publishers from hijacked ones. Sci Eng Ethics. 2017;23(1):305–8. https://doi.org/10.1007/s11948-015-9747-9.

    Article  PubMed  Google Scholar 

  11. Singhal S, Kalra BS. Publication ethics: Role and responsibility of authors. Indian J Gastroenterol. 2021;40(1):65–71. https://doi.org/10.1007/s12664-020-01129-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Negahdary M. Simultaneous submission of a manuscript to more than one journal: challenges and solutions. Publ Res Q. 2017;33(2):188–91. https://doi.org/10.1007/s12109-017-9507-6.

    Article  Google Scholar 

  13. Sivakumar E, Chawla P, Ganesan G (2022) Challenges in scholarly communication and scientific publication—present scenario and opportunities through blockchain solutions. In: The 5th International Conference on Future Networks and Distributed Systems, p. 496–503. doi: https://doi.org/10.1145/3508072.3508174.

  14. Khurana P, Ganesan G, Kumar, G, Sharma K (2023) A bibliometric analysis to unveil the impact of digital object identifiers (DOI) on bibliometric indicators in Proceedings of Third International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol. 421, p. 859–869. doi: https://doi.org/10.1007/978-981-19-1142-2_67.

  15. Khurana P, Ganesan G, Kumar G, Sharma K. A comparative analysis of unified informetrics with scopus and web of science. J Scientometr Res. 2022;11(2):146–54. https://doi.org/10.5530/jscires.11.2.16.

    Article  Google Scholar 

  16. Harahap MK, Khairina N. Copyright protection of scientific works using digital watermarking by embedding DOI QR code. J Comput Netw Archit High Perform Comput. 2021;3(2):234–40. https://doi.org/10.47709/cnahpc.v3i2.1064.

    Article  Google Scholar 

  17. Gorraiz J, Melero-Fuentes D, Gumpenberger C, Valderrama-Zurián JC. Availability of digital object identifiers (DOIs) in web of science and scopus. J Informet. 2016;10(1):98–109. https://doi.org/10.1016/j.joi.2015.11.008.

    Article  Google Scholar 

  18. Echeverría P, López-Vallejo M. High performance FPGA-oriented Mersenne Twister Uniform Random Number Generator. J Sign Process Syst. 2013;71:105–9. https://doi.org/10.1007/s11265-012-0684-4.

    Article  Google Scholar 

  19. Thomas DB, Luk W. High quality uniform random number generation using LUT Optimised State-transition Matrices. J VLSI Sign Process Syst Sign Image Video Technol. 2007;47:77–92. https://doi.org/10.1007/s11265-006-0014-9.

    Article  Google Scholar 

  20. Bassham LE, et al. SP 800–22 Rev. 1a. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Gaithersburg: National Institute of Standards & Technology; 2010.

    Book  Google Scholar 

  21. National Institute of Standards and Technology. “FIPS-46: Data Encryption Standard (DES).” Revised as FIPS 46–1:1988, FIPS 46–2:1993, FIPS 46–3:1999. 1979. Available: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf. Accessed 27 Aug 2023.

  22. National Institute of Standards and Technology. “FIPS-197: Advanced Encryption Standard (AES)”. 2001. Available: https://csrc.nist.gov/pubs/fips/197/final Accessed on 27 Aug 2023.

  23. Diffie W, Hellman M. New directions in cryptography. IEEE Trans Inf Theory. 1976;22(6):644–54. https://doi.org/10.1109/TIT.1976.1055638.

    Article  MathSciNet  Google Scholar 

  24. Rivest RL, Shamir A, Adleman L. A method of obtaining digital signatures and public-key cryptosystems. Commun ACM. 1978;21(2):120–6.

    Article  MathSciNet  Google Scholar 

  25. Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inf Theory. 1985;31(4):469–72. https://doi.org/10.1109/TIT.1985.1057074.

    Article  MathSciNet  Google Scholar 

  26. Rabin MO. Digitalized signatures and public-key functions as intractable as factorization. 1979. Available: https://dspace.mit.edu/handle/1721.1/149499. Accessed on 27 Aug 2023.

  27. Rivest R. The MD5 message-digest algorithm. 1992. Available: https://www.rfc-editor.org/rfc/rfc1321. Accessed on 27 Aug 2023.

  28. National Institute of Standards and Technology. FIPS 180–1: Secure Hash Standard, April 1995. Available: https://csrc.nist.gov/pubs/fips/180-1/final. Accessed on 27 Aug 2023.

  29. National Institute of Standards and Technology. FIPS 180–2 Secure Hash Standard. 2002. Available: https://csrc.nist.gov/pubs/fips/180-2/upd1/final. Accessed on 27 Aug 2023

  30. National Institute of Standards and Technology. FIPS 202 Secure Hash Standard. 2015. Available: https://csrc.nist.gov/pubs/fips/202/final. Accessed on 27 Aug 2023].

  31. Aumasson J-P, Meier W, Phan RC-W, Henzen L. The hash function BLAKE. New York: Springer; 2015.

    Google Scholar 

  32. National Institute of Standards and Technology. FIPS 198–1: The Keyed-Hash Message Authentication Code (HMAC). 2008. Available: https://csrc.nist.gov/pubs/fips/198-1/final [Accessed on 27 Aug 2023

  33. Berlekamp ER. Algebraic coding theory. World Science. 1968.

  34. Andoohgin SM, Jazi MD, Borchardt G, et al. Detecting hijacked journals by using classification algorithms. Sci Eng Ethics. 2018;24:655–68. https://doi.org/10.1007/s11948-017-9914-2.

    Article  Google Scholar 

  35. Butnaru A, Mylonas A, Pitropakis N. Towards lightweight URL-based phishing detection. Future Internet. 2021;13(6):154. https://doi.org/10.3390/fi13060154.

    Article  Google Scholar 

  36. El-Rashidy MA. A smart model for web phishing detection based on new proposed feature selection technique. Menoufia J Electron Eng. 2021;30(1):97–104. https://doi.org/10.21608/mjeer.2021.146286.

    Article  Google Scholar 

  37. Wang W, Zhang F, Luo X, Zhang S. PDRCNN: precise phishing detection with recurrent convolutional neural networks. Secur Commun Netw. 2019;2019:2595794. https://doi.org/10.1155/2019/2595794.

    Article  Google Scholar 

  38. Al-Ahmadi S. A deep learning technique for web phishing detection combined URL features and visual similarity. Int J Comput Netw Commun (IJCNC) 12(5). 2020. Available at SSRN: https://ssrn.com/abstract=3716033.

  39. Alqahtani H, Alotaibi SS, Alrayes FS, Al-Turaiki I, Alissa KA, Aziz ASA, Maray M, Al DM. Evolutionary algorithm with deep auto encoder network based website phishing detection and classification. Appl Sci. 2022;12(15):7441. https://doi.org/10.3390/app12157441.

    Article  CAS  Google Scholar 

  40. Zhu E, Ju Y, Chen Z, Liu F, Fang X. DTOF-ANN: an artificial neural network phishing detection model based on decision tree and optimal features. Appl Soft Comput. 2020;95:106505. https://doi.org/10.1016/j.asoc.2020.106505.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Eashwar Sivakumar.

Ethics declarations

Conflict of Interest

The authors declare that we have no competing interests.

Research Involving Human and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Intelligent Systems” guest edited by Geetha Ganesan, Lalit Garg, Renu Dhir, Vijay Kumar and Manik Sharma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, E., Singh, K.J., Chawla, P. et al. PRAY So You Don’t Become Prey. SN COMPUT. SCI. 5, 324 (2024). https://doi.org/10.1007/s42979-024-02644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02644-4

Keywords

Navigation