Skip to main content

Advertisement

Log in

Prediction of Child Birth Weight Using Kernel Extreme Reservoir Machine and QPSO for Optimization

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Birth weight is considered a major factor when monitoring any signs of abnormalities in the growth of the fetus and taking timely decisions related to labor management. Existing methods involve specialized equipment and training, which makes them less feasible for underdeveloped areas. Therefore, this study proposed a system for prediction of childbirth weight through kernel extreme reservoir machines and optimized the model parameters by the use of particle swarm optimization. Experimental results showed a significant improvement in the recommended method over existing models. The proposed approach is more economical than the traditional ultrasound making it extremely suited to underprivileged communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anggraini D, Abdollahian M, Marion K. Foetal weight prediction models at a given gestational age in the absence of ultrasound facilities: application in Indonesia. BMC Pregnancy Childb. 2018;18(1):436.

    Google Scholar 

  2. Deb K. An introduction to genetic algorithms. Sadhana. 1999;24:293–315. https://doi.org/10.1007/BF02823145.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bajracharya J, Shrestha NS, Karki C. Accuracy of prediction of birth weight by fetal ultrasound. Kathmandu Univ Med J. 2012;10(2):74–6.

    Google Scholar 

  4. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. International Child Development Steering Group. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369(9555):60–70. https://doi.org/10.1016/S0140-6736(07)60032-4.

    Article  Google Scholar 

  5. Njoku C. Determination of accuracy of fetal weight using ultrasound and clinical fetal weight estimations in Calabar South. International scholarly research notices: South Nigeria; 2014.

  6. Kehinde OA, Njokanma OF, Olanrewaju DM. Parental socioeconomic status and birth weight distribution of Nigerian term newborn babies. Niger. J. Paediatr. 2013;40(3):299–302.

    Google Scholar 

  7. Kaya Y. Evaluation of texture features for automatic detecting butterfly species using extreme learning machine. J. Exp. Theor. Artif. Intell. 2014;26(2):267–81.

    Google Scholar 

  8. Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1–3):489–501.

    Google Scholar 

  9. Matias T. Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine. Neurocomputing. 2014;129:428–36.

    Google Scholar 

  10. Lu S. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol Disord Drug Targets. 2017;16:23–9.

  11. Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):1149–57.

    Google Scholar 

  12. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science; 1995. pp. 39–43. https://doi.org/10.1109/MHS.1995.494215.

  13. Xu Y, Shu Y. Evolutionary Extreme Learning Machine—based on Particle Swarm Optimization. In: Wang J, Yi Z, Zurada JM, Lu BL, Yin H, editors. Advances in Neural Networks—ISNN 2006. Berlin, Heidelberg: Springer; 2006. p. 644–52.

    Google Scholar 

  14. Han F, Yao HF, Ling QH. An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing. 2013;116:87–93.

    Google Scholar 

  15. Vidhya S, Kamaraj V. Particle swarm optimized extreme learning machine for feature classification in power quality data mining. Automatika. 2017;58(4):487–94. https://doi.org/10.1080/00051144.2018.1476085.

    Article  Google Scholar 

  16. Velló MA, Martínez-Costa C, Catalá M, Fons J, Brines J, Guijarro-Martínez R. Prenatal and neonatal risk factors for the development of enamel defects in low birth weight children. Oral Dis. 2010;16(3):257–62. https://doi.org/10.1111/j.1601-0825.2009.01629.x. Erratum in: Oral Dis. 2011;17(1):128.

  17. Dare FO. The value of symphysio-fundal height/abdominal girth measurements in predicting fetal weight. Int J Gynecol Obstet. 1990;31(3):243–8.

    Google Scholar 

  18. Shittu AS, Kuti O, Orji EO, Makinde NO, Ogunniy SO, Ayoola OO, Sule SS. Clinical versus sonographic estimation of foetal weight in southwest Nigeria. J Health Popul Nutr. 2007;25(1):14–23.

    Google Scholar 

  19. Nahum GG. Detecting and managing fetal macrosomia. Contemp OB/Gyn. 2000a;45(6):89.

    Google Scholar 

  20. Nahum GG. Fetal macrosomia: detection, risks, and management. Postgrad Obstet Gynecol. 2000b;20(10):1–8.

    Google Scholar 

  21. Chauhan SP. Intrapartum clinical, sonographic, and parous patients’ estimates of newborn birth weight. Obstet Gynecol. 1992;79(6):956–8.

    Google Scholar 

  22. Nzeh DA. Prediction of birthweight by fetal ultrasound biometry. 1992.

  23. Etikan I, Çaglar MK. Prediction methods for babies’ birth weight using linear and nonlinear regression analysis. 2005.

  24. Nahum GG, Stanislaw H, Huffaker BJ. Accurate prediction of term birth weight from prospectively measurable maternal characteristics. J Reprod Med. 1999;44:705–12.

    Google Scholar 

  25. Ojwang S, Ouko BC. Prediction of fetal weight in utero by fundal height/girth measurements. J Obstet Gynecol East Central Afr. 1984;3:111.

    Google Scholar 

  26. Shittu A, Kuti O, Orji E, Makinde N, Ogunniy S, Ayoola O, Sule S. Clinical versus sonographic estimation of foetal weight in Southwest Nigeria. J Health Popul Nutr. 2007;25:14–23.

    Google Scholar 

  27. Hadlock FP. Estimation of fetal weight with the use of head, body, and femur measurements-a prospective study. Am J Obstet Gynecol. 1985;151(3):333–7.

    Google Scholar 

  28. Anggraini D, Abdollahian M, Marion K. Foetal weight prediction models at a given gestational age in the absence of ultrasound facilities: application in Indonesia. BMC Pregnancy Childbirth. 2018;18(1):436.

    Google Scholar 

  29. Prechapanich J, Thitadilok W. Comparison of the accuracy of fetal weight estimation using clinical and sonographic methods. J Med Assoc Thail. 2004;87:1–7.

    Google Scholar 

  30. Colman A. Reliability of ultrasound estimation of fetal weight in term singleton pregnancies. N Z Med J.2006;1241:119

  31. Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol. 2005;25(1):80–9.

    Google Scholar 

  32. Suzuki K, Minei LJ, Schnitzer LE. Ultrasonographic measurement of fetal heart volume for estimation of birthweight. Obstet Gynecol. 1974;43(6):867–71.

    Google Scholar 

  33. Nzeh DA, Oyawoye O, Adetoro OO. Ultrasound estimation of birth weight in late pregnancy among African women. West Afr J Ultrasound. 2000;1:9–14.

    Google Scholar 

  34. Combs CA. Sonographic estimation of fetal weight based on a model of fetal volume. Obstet Gynecol. 1993;82(3):365–70.

    Google Scholar 

  35. Ott WJ. Intrauterine growth retardation and preterm delivery. Am J Obstet Gynecol. 1993;168(6):1710–7.

    Google Scholar 

  36. Siggelkow W, Schmidt M, Skala C, Boehm D, von Forstner S, Koelbl H, Tresch A. A new algorithm for improving fetal weight estimation from ultrasound data at term. Arch Gynecol Obstet. 2011;283(3):469–74. https://doi.org/10.1007/s00404-010-1390-8.

    Article  Google Scholar 

  37. Chauhan SP. Sonographic measurements of fetal parts to predict pulmonary maturity among twins and singletons. J Miss State Med Assoc. 2000;41(3):516–20.

    Google Scholar 

  38. Hendrix NW, Grady CS, Chauhan SP. Clinical vs. sonographic estimate of birth weight in term parturients. A randomized clinical trial. J Reprod Med. 2000;45(4):317–22.

    Google Scholar 

  39. Pressman E. Prediction of birth weight by ultrasound in the third trimester. Obstet Gynecol. 2000;95(4):502–6. https://doi.org/10.1016/s0029-7844(99)00617-1.

    Article  Google Scholar 

  40. Sokol RJ. Correctly identifying the macrosomic fetus: improving ultrasonography-based prediction. Am J Obstet Gynecol. 2000;182(6):1489–95.

    Google Scholar 

  41. Weiner Z. Clinical and ultrasonographic weight estimation in large for gestational age fetus. Eur J Obstet Gynecol Reprod Biol. 2002;105(1):20–4.

    Google Scholar 

  42. Poulos PP, Langstadt JR. The volume of the uterus during labor and its correlation with birth weight: I. A method for the prediction of birth weight. Am J Obstet Gynecol. 1953;65(2):233–44.

    Google Scholar 

  43. Campbell S, Wilkin D. Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. BJOG Int J Obstet Gynaecol. 1975;82(9):689–97.

    Google Scholar 

  44. Shepard MJ. An evaluation of two equations for predicting fetal weight by ultrasound. Am J Obstet Gynecol. 1982;142(1):47–54.

    Google Scholar 

  45. Su CF. Prediction of newborn birth weight based on the estimation at 20–24 weeks of gestation. Taiwan J Obstet Gynecol. 2010;49(3):285–90.

    Google Scholar 

  46. Zaki MN. Predicting birth weight in fetuses with gastroschisis. J Perinatol. 2018;38(2):122.

    Google Scholar 

  47. Gjessing HK. Fetal size monitoring and birth-weight prediction: a new population-based approach. Ultrasound Obstet Gynecol. 2017;49(4):500–7.

    Google Scholar 

  48. Hassibi S. Optimization of fetal weight estimates using MRI: comparison of acquisitions. Am J Roentgenol. 2004;183(2):487–92.

    Google Scholar 

  49. Duncan KR. A comparison of fetal organ measurements by echo-planar magnetic resonance imaging and ultrasound. BJOG Int J Obstet Gynaecol. 2005;112(1):43–9.

    Google Scholar 

  50. Nahum GG, Stanislaw H. Hemoglobin, altitude and birth weight: does maternal anemia during pregnancy influence fetal growth? J Reprod Med. 2004;49(4):297–305.

    Google Scholar 

  51. Nahum GG, Stanislaw H. Validation of a birth weight prediction equation based on maternal characteristics. J Reprod Med. 2002;47(9):752–60. Erratum in: J Reprod Med. 2003;48(2):44A.

  52. Nahum GG, Stanislaw H. Relationship of paternal factors to birth weight. J Reprod Med. 2003a;48:963–71.

    Google Scholar 

  53. Nahum GG, Stanislaw H. Ultrasonographic prediction of term birth weight: how accurate is it? Am J Obstet Gynecol. 2003b;188(2):566–74. https://doi.org/10.1067/mob.2003.155.

    Article  Google Scholar 

  54. Qureshi H. Association of pre-pregnancy weight and weight gain with perinatal mortality. 2010.

  55. Saxe AM. On random weights and unsupervised feature learning. 2008.

  56. Widrow B. The No-Prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 2013;37:182–8.

    Google Scholar 

  57. Le Q, Sarlós T, Smola A. Fastfood-approximating kernel expansions in loglinear time. 2013.

  58. He Q. Parallel extreme learning machine for regression based on MapReduce. Neurocomputing. 2013;102:52–8.

    Google Scholar 

  59. Miche Y. OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21:158–62.

    Google Scholar 

  60. Rahimi A, Recht B. Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. 2008.

  61. Huang GB, Siew CK. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24.

    Google Scholar 

  62. Gürpınar F, Kaya H, Dibeklioglu H, Salah A. Kernel ELM and CNN based facial age estimation; 2016. pp. 785–91. https://doi.org/10.1109/CVPRW.2016.103.

  63. Fu H. Fast detection of impact location using kernel extreme learning machine. Neural Comput Appl. 2016;27:121–30.

    Google Scholar 

  64. Su L, Yao M. (2013). Extreme learning machine with multiple kernels; 2013. pp. 424–9. https://doi.org/10.1109/ICCA.2013.6565148.

  65. Liu X. Multiple kernel extreme learning machine. Neurocomputing. 2015;149:253–64.

    Google Scholar 

  66. Schrauwen B, Verstraeten D, Campenhout JV. An overview of reservoir computing: theory, applications and implementations. 2007.

  67. Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw. 2007;20(3):391–403. https://doi.org/10.1016/j.neunet.2007.04.003.

    Article  MATH  Google Scholar 

  68. Bianchi FM. Prediction of telephone calls load using echo state network with exogenous variables. Neural Netw. 2015;71:204–13.

    Google Scholar 

  69. Jaeger H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note, vol. 148. Bonn; 2001. p. 13 (Technical Report).

  70. Ortín S. A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci Rep. 2015;5:14945.

    Google Scholar 

  71. Karaboga D. An idea based on honey bee swarm for numerical optimization. Erciyes university, engineering faculty Technical report-tr06. 2005.

  72. Zhou L, Yang H, Liu C. QPSO-based hyper-parameters selection for LS-SVM regression. In: International Conference on Natural Computation, vol. 2; 2008. pp. 130–3. https://doi.org/10.1109/ICNC.2008.410.

  73. Baity H. A quantum behaved particle swarm approach to multi-objective optimization. 2015.

Download references

Funding

There is no funding available for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghalib Ahmed Tahir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, G.A., Samad, T., Zongying, L. et al. Prediction of Child Birth Weight Using Kernel Extreme Reservoir Machine and QPSO for Optimization. SN COMPUT. SCI. 2, 218 (2021). https://doi.org/10.1007/s42979-021-00601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00601-z

Keywords

Navigation