Skip to main content
Log in

Bioactivity assessment of essential oils of Cymbopogon species using a network pharmacology approach

  • Original Paper
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Essential oils of Cymbopogon species have wide commercial applications in fragrance, perfumery, and pharmaceuticals as they exhibit a horizon of bioactivities. Here, essential oils of C. flexuosus and C. martinii were analysed to identify bioactive constituents and bioactivities using a network pharmacology approach. Essential oils were isolated using hydro-distillation in a mini Clevenger apparatus. Analysis of essential oils by GC–MS revealed 20 and 15 chemical constituents in C. flexuosus and C. martinii, respectively. An ingredient-target protein-pathway network was constructed comprising 10 oil constituents (citral, geraniol, geranyl acetate, limonene, linalool, α-terpineol, borneol, α-pinene, myrcene, and n-decanol), 14 target proteins, 51 related pathways, and 108 connections. Analyses of the network showed geraniol, geranyl acetate, limonene, linalool, and citral as major active constituents. A core sub-network constructed from the ingredient-target protein-pathway network revealed bioactivities including anti-cancer, anti-inflammatory and neuroprotective. The protein association network pointed out the major target proteins viz., THRB, FXR, ALOX15, and TSHR and pathways like metabolic, and neuroactive ligand-receptor interaction pathways of essential oil constituents. The target proteins and pathways provided insights into the mechanism of action of bioactive constituents. Based on the results of the study, geraniol was correlated with neuroprotective, citral to chemo-preventive, and limonene to anti-inflammatory activities. Thus, the study offers a new way for the assessment of the bioactivities of Cymbopogon species essential oils leading to the development of new biomedicines.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhila A (2010) Medical and aromatic plants-industrial profile (Taylor and Francis Group, LLC) Essential Oil-bearing Grasses: the genus Cymbopogon

  • Alitonou GA, Avlessi F, Sohounhloue DK, Agnaniet H, Bessiere JM, Menut C (2006) Investigations on the essential oil of Cymbopogon giganteus from Benin for its potential use as an anti-inflammatory agent. Int J Aromatherapy 16(1):37–41

    Article  CAS  Google Scholar 

  • Avoseh O, Oyedeji O, Rungqu P, Nkeh-Chungag B, Oyedeji A (2015) Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 20(5):7438–7453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayala B, Bassole IHN, Maqdasy S, Baron S, Simpore J, Lobaccaro JA (2018) Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell culttumour Identification of citral as a new putative anti-proliferative molecule. Biochimie 153:162–170

    Article  CAS  PubMed  Google Scholar 

  • Bhatt L, Kale RD (2019) Lemongrass (Cymbopogon Flexuosus Steud.) wats treated textile: A control measure against vector-borne diseases. Heliyon 5: e02842

  • Buch P, Patel V, Ranpariya V, Sheth N, Parmar S (2012) Neuroprotective activity of Cymbopogon martinii against cerebral ischemia/reperfusion-induced oxidative stress in rats. J Ethnopharmacol 142:35–40

    Article  CAS  PubMed  Google Scholar 

  • Carnesecchi S, Bras-Gonçalves R, Bradaia A, Zeisel M, Gosse F, Poupon MF, Raul F (2004) Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumour xenografts. Cancer Lett 215(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Chandran U, Patwardhan B (2017) Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J Ethnopharmacol 197:250–256

    Article  PubMed  Google Scholar 

  • Chaouki W, Leger DY, Liagre B, Beneytout JL, Hmamouchi M (2009) Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Clinic Pharmacol 23(5):549–556

    CAS  Google Scholar 

  • Chen L, Lv D, Wang D, Chen X, Zhu Z, Cao Y, Chai Y (2016) A novel strategy of profiling the mechanism of herbal medicines by combining network pharmacology with plasma concentration determination and affinity constant measurement. Mol Biosyst 12(11):3347–3356

    Article  CAS  PubMed  Google Scholar 

  • da Rocha Neto AC, Navarro BB, Canton L, Maraschin M, Di Piero RM (2019) Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. Lebensmittel-Wissenschaft Tech 105:385–392

    Article  Google Scholar 

  • Del Toro-Arreola S, Flores-Torales E, Torres-Lozano C, Del Toro-Arreola A, Tostado-Pelayo K, Ramirez-Duenas MG, Daneri-Navarro A (2005) Effect of D-limonene on immune response in BALB/c mice with lymphoma. Int Immunopharmacol 5(5):829–838

    Article  PubMed  Google Scholar 

  • Ekpenyong CE, Akpan E, Nyoh A (2015) Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (DC.) Stapf extracts. Chin J Natl Med 13(5):321–337

    CAS  Google Scholar 

  • Ekpenyong CE, Akpan EE (2017) Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives. Crit Rev Food Sci Nutr 57(12):2541–2559

    Article  CAS  PubMed  Google Scholar 

  • Farah IO, Trimble Q, Ndebele K, Mawson A (2010) Retinoids and citral modulated cell viability, metabolic stability, cell cycle progression and distribution in the A549 lung carcinoma cell line. Biomed Sci Instrument 46:410–421

    Google Scholar 

  • Ganjewala D, Gupta AK (2013) Lemongrass (Cymbopogon flexuosus Steud.) Wats Essential Oils. Recent Progress in Medicinal and Aromatic Plants Vol. 35. Studium Press LLC, USA, pp 233–274

  • Gogoi B, Gogoi D, Silla Y, Kakoti BB, Bhau BS (2017) Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics. Mol Biosyst 13(2):406–416

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Cheng Q (2011) Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 63(3):684–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Muhury R, Ganjewala D (2016) A study on antimicrobial activities of essential oils of different cultivars of lemongrass (Cymbopogon flexuosus). Pharma Sci 22(3):164–168

    Article  Google Scholar 

  • Hopkins AL (2007) Network pharmacology. Nat Biotech 25(10):1110–1111

    Article  CAS  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    Article  CAS  PubMed  Google Scholar 

  • Husain A (1994) Palmarosa. In: Essential oil plants and their cultivation: Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow

  • Katsukawa M, Nakata R, Takizawa Y, Hori K, Takahashi S, Inoue H (2010) Citral a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim Biophys Acta (BBA)-Mol Cell Biol Lip 1801(11):1214–1220

  • Kim SH, Bae HC, Park EJ, Lee CR, Kim BJ, Lee S, Jeon JH (2011) Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways. Biochem Biophys Res Commun 407(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Malik F, Bhushan S, Sethi VK, Shahi AK, Taneja SC, Singh J (2008) An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells. Chem Biol Interact 171(3):332–347

    Article  CAS  PubMed  Google Scholar 

  • Lal M, Dutta S, Munda S, Pandey S (2018) Identification and registration of a high essential oil yielding variety (Jor Lab L-14) of lemongrass (Cymbopogon flexuosus L.) through mutation breeding technique. J Essen Oil Bearing Plants 21:1604–1611

    Article  CAS  Google Scholar 

  • Lee HH, Lin CT, Yang LL (2007) Neuroprotection and free radical scavenging effects of Osmanthus fragrans. J Biomed Sci 14(6):819–827

    Article  PubMed  Google Scholar 

  • Lee HJ, Jeong HS, Kim DJ, Noh YH, Yuk DY, Hong JT (2008) Inhibitory effect of citral on no production by suppression of iNOS expression and NF-κB activation in RAW264 7 cells. Archives of Pharm Res 31(3):342–349

    Article  CAS  Google Scholar 

  • Li B, Tao W, Zheng C, Shar PA, Huang C, Fu Y, Wang Y (2014) Systems pharmacology-based approach for dissecting the addition and subtraction theory of traditional Chinese medicine: an example using Xiao-Chaihu-Decoction and Da-Chaihu-Decoction. Comput Biol Med 53:19–29

    Article  PubMed  Google Scholar 

  • Li H, Huang J, Zhang X, Chen Y, Yang J, Hei L (2005) Allelopathic effects of Cymbopogon citratus volatile and its chemical components. The J Appl Ecol 16(4):763–767

    CAS  Google Scholar 

  • Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chinese J Natl Med 11(2):110–120

    Article  Google Scholar 

  • Li CC, Yu HF, Chang CH, Liu YT, Yao HT (2018) Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats. J Food and Drug Anal 26:432–438

    Article  CAS  Google Scholar 

  • Luo F, Gu J, Chen L, Xu X (2014) Systems pharmacology strategies for anticancer drug discovery based on natural products. Mol Biosyst 10(7):1912–1917

    Article  CAS  PubMed  Google Scholar 

  • Modak T, Mukhopadhaya A (2011) Effects of citral, a naturally occurring antiadipogenic molecule, on an energy-intense diet model of obesity. Int J Pharmacol 43(3):300–305

    Google Scholar 

  • Nelson DR (2006) Cytochrome P450 Nomenclature, 2004. Cytochrome P450 protocols. Humana Press, Totowa, NJ, pp 1–10

    Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  Google Scholar 

  • Nickel J, Gohlke BO, Ehreman J, Banerjee P, Rong WW et al (2014) SuperPred: update on drug classification and target prediction. Nucl Acids Res 42:W26-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirmal S, Girme A, Bhalke RD (2007) Major ingredients and anthelmintic activity of volatile oils from leaves and flowers of Cymbopogon martinii Roxb. Nat Prod Res 21:1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Oladeji OS, Adelowo FE, Ayodele DT, Odelade KA (2019) Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci Afric 6:e00137

  • Ortiz MI, Gonzalez-Garcia MP, Ponce-Monter HA, Castaneda-Hernandez G, Aguilar-Robles P (2010a) Synergistic effect of the interaction between naproxen and citral on inflammation in rats. Phytomed 18(1):74–79

    Article  CAS  Google Scholar 

  • Ortiz MI, Ramirez-Montiel ML, Gonzalez-Garcaa MP, Ponce-Monter HA, Castaneda-Hernandez G, Carino-Cortes R (2010b) The combination of naproxen and citral reduces nociception and gastric damage in rats. Arch Pharm Res 33(10):1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MD (2002) Anti-inflammatory activity of linalool and linalyl acetate ingredients of essential oils. Phytomed 9(8):721–726

    Article  CAS  Google Scholar 

  • Peana AT, Marzocco S, Popolo A, Pinto A (2006) (-)-Linalool inhibits in vitro NO formation: probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci 78(7):719–723

    Article  CAS  PubMed  Google Scholar 

  • Pingle V, Saraswati KJT, Sanakal R, Kaliwal BB (2011) Inhibition of aldose activity by essential phytochemicals of Cymbopogon Citratus (DC). Stapf Int J Biomet Bioinfo 5:257–267

    Google Scholar 

  • Prasad SN (2014) Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy. J Insect Physiol 60:7–16

    Article  CAS  PubMed  Google Scholar 

  • Quintans-Junior L, da Rocha RF, Caregnato FF, Moreira JC, da Silva FA, Gelain DP (2011) Antinociceptive action and redox properties of citronellal, an essential oil present in lemongrass. J Med Food 14(6):630–639

    Article  CAS  PubMed  Google Scholar 

  • Raina V, Srivastava S, Aggarwal K, Syamasundar KV, Khanuja S (2003) Essential oil composition of Cymbopogon martinii from different places in India. Flav Frag J 18:312–315

    Article  CAS  Google Scholar 

  • Santoro GF, Cardoso MG, Guimaraes LGL, Freire JM, Soares MJ (2007) Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parasitol 134(11):1649–1656

    Article  CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, PatchDock WHJ, SymmDock, (2005) servers for rigid and symmetric docking. Nucl Acids Res 33:W363-367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrodinger L, DeLano W (2020) PyMOL. http://www.pymol.org/pymol.

  • Sharma PR, Mondhe DM, Muthiah S, Pal HC, Shahi AK, Saxena AK, Qazi GN (2009) Anticancer activity of an essential oil from Cymbopogon flexuosus. Chem Biol Interact 179(3):160–168

    Article  CAS  PubMed  Google Scholar 

  • Siddique YH, Naz F, Jyoti S, Ali F, Fatima A, Khanam S (2016) Protective effect of geraniol on the transgenic Drosophila model of Parkinson’s disease. Toxicol Pharmacol 43:225–231

    Article  CAS  Google Scholar 

  • Su G, Morris JH, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinform 47: 8.13.1–24.

  • Vermaa RS, Singh S, Padalia RC, Tandon S, Venkatesh KT, Chauhan A (2019) Essential oil composition of the sub-aerial parts of eight species of Cymbopogon (Poaceae). Ind Crops and Prod 142: 111839.

  • Viana GS, Vale TG, Pinho RS, Matos FJ (2000) Antinociceptive effect of the essential oil from Cymbopogon citratus in mice. J Ethnopharmacol 70(3):323–327

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xu CY, Hu JB, Cao KF (2014a) A complex network analysis of hypertension-related genes. Physica a: Statist Mech Appl 394:166–176

    Article  Google Scholar 

  • Wang L, Li Z, Shao Q, Li X, Ai N, Zhao X, Fan X (2014b) Dissecting active ingredients of Chinese medicine by content-weighted ingredient-target network. Mol BioSyst 10(7):1905–1911

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tan N, Hu J, Wang H, Duan D, Ma L, Wang X (2017). Analysis of the main active ingredients and bioactivities of essential oil from Osmanthus fragrans Var. thunbergii using a complex network approach. Syst Biol 11(1):144–148

  • Yang YL, Ma SJ, Liu SF, Hsieh PF (2015) Water extract of Osmanthus fragrans attenuates TGF-β1-induced lung cellular fibrosis in human lung fibroblasts cells. Int J Pharmacol Res 5(8):191–199

    Google Scholar 

  • Yang Z, Xi J, Li J, Qu W (2009) Biphasic effect of citral, a flavoring and scenting agent, on spatial learning and memory in rats. Pharmacol Biochem Behavior 93(4):391–396

    Article  CAS  Google Scholar 

  • Yoon WJ, Lee NH, Hyun CG (2010) Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J Oleo Sci 59(8):415–421

  • Zanger UM, Hofmann MH (2008) Polymorphic cytochromes P450 CYP2B6 and CYP2D6: recent advances on single nucleotide polymorphisms affecting splicing. Acta Chim Slov 55:38–44

    CAS  Google Scholar 

  • Zhang X, Gu J, Cao L, Li N, Ma Y, Su Z, Xiao W (2014) Network pharmacology study on the mechanism of traditional Chinese medicine for upper respiratory tract infection. Mol BioSyst 10(10):2517–2525

    Article  CAS  PubMed  Google Scholar 

  • Zheljazkov VD, Cantrell CL, Astatkie T, Cannon JB (2011) Lemongrass productivity, oil content, and composition as a function of nitrogen, sulfur, and harvest time. Agron J 103:805–812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the founder President Dr. Ashok K Chauhan and Chancellor Mr. Atul Chauhan of Amity University Uttar Pradesh, Noida, India for providing all the support and facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Ganjewala.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, H., Pravallika, V.S.S., Srivastava, G. et al. Bioactivity assessment of essential oils of Cymbopogon species using a network pharmacology approach. BIOLOGIA FUTURA 73, 107–118 (2022). https://doi.org/10.1007/s42977-022-00111-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42977-022-00111-w

Keywords

Navigation