Skip to main content
Log in

A Locking-Free and Reduction-Free Conforming Finite Element Method for the Reissner-Mindlin Plate on Rectangular Meshes

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

A family of conforming finite elements are designed on rectangular grids for solving the Reissner-Mindlin plate equation. The rotation is approximated by \(C^1-Q_{k+1}\) in one direction and \(C^0-Q_k\) in the other direction finite elements. The displacement is approximated by \(C^1-Q_{k+1,k+1}\). The method is locking-free without using any projection/reduction operator. Theoretical proof and numerical confirmation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This research does not use any external or author-collected data.

References

  1. Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196(37/38/39/40), 3660–3671 (2007)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Marini, D.: A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22, 25–45 (2005)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bathe, K.-J., Brezzi, F.: On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. In: The Mathematics of Finite Elements and Applications. V (Uxbridge, 1984), pp. 491–503. Academic Press, London (1985)

  5. Bathe, K.-J., Brezzi, F.: A simplified analysis of two plate bending elements—the MITC4 and MITC9 elements. In: Numerical Techniques for Engineering Analysis and Design, vol. 1. Martinus Nijhoff, Amsterdam (1987)

  6. Bathe, K.-J., Brezzi, F., Cho, S.W.: The MITC7 and MITC9 plate bending elements. Comput. Struct. 32, 797–841 (1989)

    Article  Google Scholar 

  7. Bathe, K.-J., Dvorkin, E.N.: A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985)

    Article  Google Scholar 

  8. Bathe, K.-J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22, 697–722 (1986)

    Article  Google Scholar 

  9. Beirao da Veiga, L., Buffa, A., Lovadina, C., Martinelli, M., Sangalli, G.: An isogeometric method for the Reissner-Mindlin plate bending problem. Comput. Methods Appl. Mech. Eng. 209(212), 45–53 (2012)

    Article  MathSciNet  Google Scholar 

  10. Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 1(2), 125–151 (1991)

    Article  MathSciNet  Google Scholar 

  11. Durán, R., Hernández, E., Hervella-Nieto, L., Liberman, E., Rodríguez, R.: Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAM J. Numer. Anal. 41, 1751–1772 (2003)

    Article  MathSciNet  Google Scholar 

  12. Durán, R., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.: Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp. 68(228), 1447–1463 (1999)

    Article  MathSciNet  Google Scholar 

  13. Durán, R., Liberman, E.: On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp. 58(198), 561–573 (1992)

    Article  MathSciNet  Google Scholar 

  14. Durán, R., Liberman, E.: On the convergence of a triangular mixed finite element method for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 6, 339–352 (1996)

    Article  MathSciNet  Google Scholar 

  15. Falk, R.S., Tu, T.: Locking-free finite elements for the Reissner-Mindlin plate. Math. Comp. 69(231), 911–928 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hansbo, P., Heintz, D., Larson, M.: A finite element method with discontinuous rotations for the Mindlin-Reissner plate model. Comput. Methods Appl. Mech. Eng. 200, 638–648 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hu, J., Huang, Y., Zhang, S.: The lowest order differentiable finite element on rectangular grids. SIAM Num. Anal. 49(4), 1350–1368 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hu, J., Jiang, L., Shi, Z.: New a posteriori error estimate and quasi-optimal convergence of the adaptive nonconforming Wilson element. J. Comput. Appl. Math. 265, 173–186 (2014)

    Article  MathSciNet  Google Scholar 

  19. Hu, J., Ming, P., Shi, Z.: Nonconforming quadrilateral rotated Q1 element for Reissner-Mindlin plate. J. Comput. Math. 21, 25–32 (2003)

    MathSciNet  Google Scholar 

  20. Hu, J., Shi, Z.-C.: On the convergence of Weissman-Taylor element for Reissner-Mindlin plate. Int. J. Numer. Anal. Model. 1(1), 65–73 (2004)

    MathSciNet  Google Scholar 

  21. Hu, J., Shi, Z.-C.: Two lower order nonconforming rectangular elements for the Reissner-Mindlin plate. Math. Comp. 76(260), 1771–1786 (2007)

    Article  MathSciNet  Google Scholar 

  22. Hu, J., Shi, Z.-C: Error analysis of quadrilateral Wilson element for Reissner-Mindlin plate. Comput. Methods Appl. Mech. Eng. 197(6/7/8), 464–475 (2008)

    Article  MathSciNet  Google Scholar 

  23. Hu, J., Shi, Z.-C.: Two lower order nonconforming quadrilateral elements for the Reissner-Mindlin plate. Sci. China Ser. A 51(11), 2097–2114 (2008)

    Article  MathSciNet  Google Scholar 

  24. Hu, J., Shi, Z.-C.: Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate problem. Math. Comp. 78(266), 673–711 (2009)

    Article  MathSciNet  Google Scholar 

  25. Hu, J., Shi, Z.-C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112(1), 25–40 (2009)

    Article  MathSciNet  Google Scholar 

  26. Hu, J., Shi, Z.-C.: Analysis of nonconforming rotated Q1 element for the Reissner-Mindlin plate problem. Industrial and Applied Mathematics in China, 101–111, Ser. Contemp. Appl. Math. CAM, 10, Higher Ed. Press, Beijing (2009)

  27. Hu, J., Shi, Z.-C.: The best L2 norm error estimate of lower order finite element methods for the fourth order problem. J. Comput. Math. 30(5), 449–460 (2012)

    Article  MathSciNet  Google Scholar 

  28. Hu, J., Shi, Z.-C.: A lower bound of the L2 norm error estimate for the Adini element of the biharmonic equation. SIAM J. Numer. Anal. 51(5), 2651–2659 (2013)

    Article  MathSciNet  Google Scholar 

  29. Hu, J., Shi, Z.-C.: Constrained nonconforming rotated Q1 element methods for the Reissner-Mindlin plate problem. Math. Numer. Sin. 38(3), 325–340 (2016)

    MathSciNet  Google Scholar 

  30. Hu, J., Shi, Z.-C., Xu, J.: Convergence and optimality of the adaptive Morley element method. Numer. Math. 121(4), 731–752 (2012)

    Article  MathSciNet  Google Scholar 

  31. Hu, J., Zhang, S.: The minimal conforming \(H^k\) finite element spaces on \(R^n\) rectangular grids. Math. Comp. 84(292), 563–579 (2015)

    Article  MathSciNet  Google Scholar 

  32. Huang, J., Guo, L., Shi, Z.-C.: Vibration analysis of Kirchhoff plates by the Morley element method. J. Comput. Appl. Math. 213(1), 14–34 (2008)

    Article  MathSciNet  Google Scholar 

  33. Huang, Y., Zhang, S.: A lowest order divergence-free finite element on rectangular grids. Front. Math. China 6(2), 253–270 (2011)

    Article  MathSciNet  Google Scholar 

  34. Huang, Y., Zhang, S.: Supercloseness of the divergence-free finite element solutions on rectangular grids. Commun. Math. Stat. 1, 143–162 (2013)

    Article  MathSciNet  Google Scholar 

  35. Hughes, T.J.R., Tezuyar, T.E.: Finite elements based upon Mindlin plate theory with particular reference to the four node blinear isoparamtric element. J. Appl. Mech. Eng. 48, 587–598 (1981)

    Article  Google Scholar 

  36. Lai, J., Huang, J., Shi, Z.-C.: A lumped mass finite element method for vibration analysis of elastic plate-plate structures. Sci. China Math. 53(6), 1453–1474 (2010)

    Article  MathSciNet  Google Scholar 

  37. Li, H., Ming, P., Shi, Z.-C.: The quadratic Specht triangle. J. Comput. Math. 38(1), 103–124 (2020)

    Article  MathSciNet  Google Scholar 

  38. Lovadina, C., Marini, D.: Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Eng. 195, 3448–3460 (2006)

    Article  MathSciNet  Google Scholar 

  39. Mao, S., Nicaise, S., Shi, Z.-C.: Error estimates of Morley triangular element satisfying the maximal angle condition. Int. J. Numer. Anal. Model. 7(4), 639–655 (2010)

    MathSciNet  Google Scholar 

  40. Mao, S., Shi, Z.-C.: High accuracy analysis of two nonconforming plate elements. Numer. Math. 111(3), 407–443 (2009)

    Article  MathSciNet  Google Scholar 

  41. Ming, P., Shi, Z.-C.: Nonconforming rotated Q1 element for Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 11, 1311–1342 (2001)

    Article  MathSciNet  Google Scholar 

  42. Ming, P., Shi, Z.-C.: Two nonconforming quadrilateral elements for the Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 15(10), 1503–1517 (2005)

    Article  MathSciNet  Google Scholar 

  43. Ming, P., Shi, Z.-C.: Analysis of some low order quadrilateral Reissner-Mindlin plate elements. Math. Comp. 75(255), 1043–1065 (2006)

    Article  MathSciNet  Google Scholar 

  44. Perugia, I., Scapolla, T.: Optimal rectangular MITC finite elements for Reissner-Mindlin plates. Numer. Methods Partial Differential Equations 13(5), 575–585 (1997)

    Article  MathSciNet  Google Scholar 

  45. Scott, L.R., Zhang, S.: Higher-dimensional nonnested multigrid methods. Math. Comp. 58(198), 457–466 (1992)

    Article  MathSciNet  Google Scholar 

  46. Shi, Z.-C.: On the convergence of the incomplete biquadratic nonconforming plate element. Math. Numer. Sinica 8(1), 53–62 (1986)

    MathSciNet  Google Scholar 

  47. Shi, Z.-C.: Convergence of the TRUNC plate element. Comput. Methods Appl. Mech. Eng. 62(1), 71–88 (1987)

    Article  MathSciNet  Google Scholar 

  48. Shi, Z.-C.: The space of shape functions of an energy-orthogonal plate element. J. China Univ. Sci. Tech. 20(2), 127–131 (1990)

    MathSciNet  Google Scholar 

  49. Shi, Z.-C.: Error estimates for the Morley element. Math. Numer. Sinica 12(2), 113–118 (1990)

    MathSciNet  Google Scholar 

  50. Shi, Z., Chen, Q.: An efficient rectangular plate element. Sci. China Ser. A 44(2), 145–158 (2001)

    Article  MathSciNet  Google Scholar 

  51. Shi, Z.-C., Xie, Z.-H.: Substructure preconditioners for nonconforming plate elements. J. Comput. Math. 16(4), 289–304 (1998)

    MathSciNet  Google Scholar 

  52. Shi, Z.-C., Xu, X.: A V-cycle multigrid method for TRUNC plate element. Comput. Methods Appl. Mech. Eng. 188(1/2/3), 483–493 (2000)

    Article  MathSciNet  Google Scholar 

  53. Shi, Z.-C., Xu, X.-J.: The mortar element method for a nonlinear biharmonic equation. J. Comput. Math. 23(5), 537–560 (2005)

    MathSciNet  Google Scholar 

  54. Stenberg, R., Suri, M.: An hp error analysis of MITC plate elements. SIAM J. Numer. Anal. 34, 544–568 (1997)

    Article  MathSciNet  Google Scholar 

  55. Wang, M., Shi, Z.-C., Xu, J.: Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007)

    MathSciNet  Google Scholar 

  56. Ye, X.: A rectangular element for the Reissner-Mindlin plate. Numer. Methods Partial Differential Equations 16(2), 184–193 (2000)

    Article  MathSciNet  Google Scholar 

  57. Ye, X., Zhang, S., Zhang, Z.: A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes. Comput. Math. Appl. 80(5), 906–916 (2020)

    Article  MathSciNet  Google Scholar 

  58. Zhang, S.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009)

    Article  MathSciNet  Google Scholar 

  59. Zhang, S.: On the full \(C_1\)-\(Q_k\) finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2, 701–721 (2010)

    Article  MathSciNet  Google Scholar 

  60. Zhang, S.: Robust Falk-Neilan finite elements for the Reissner-Mindlin plate. Commun. Appl. Math. Comput. 5, 1697–1712 (2023)

Download references

Acknowledgements

None.

Funding

This research is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contribution.

Corresponding author

Correspondence to Zhimin Zhang.

Ethics declarations

Conflict of Interest

There is no potential conflict of interest.

Ethical Approval

This article does not contain any studies involving animals. This article does not contain any studies involving human participants. The submitted work is original and is not published elsewhere in any form or language.

Informed Consent

This research does not have any human participant.

Additional information

In Honor of the Memory of Professor Zhong-Ci Shi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, Z. A Locking-Free and Reduction-Free Conforming Finite Element Method for the Reissner-Mindlin Plate on Rectangular Meshes. Commun. Appl. Math. Comput. (2024). https://doi.org/10.1007/s42967-023-00343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00343-0

Keywords

Mathematics Subject Classification

Navigation