Skip to main content
Log in

Asymmetry and Condition Number of an Elliptic-Parabolic System for Biological Network Formation

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We present results of numerical simulations of the tensor-valued elliptic-parabolic PDE model for biological network formation. The numerical method is based on a nonlinear finite difference scheme on a uniform Cartesian grid in a two-dimensional (2D) domain. The focus is on the impact of different discretization methods and choices of regularization parameters on the symmetry of the numerical solution. In particular, we show that using the symmetric alternating direction implicit (ADI) method for time discretization helps preserve the symmetry of the solution, compared to the (non-symmetric) ADI method. Moreover, we study the effect of the regularization by the isotropic background permeability \(r>0\), showing that the increased condition number of the elliptic problem due to decreasing value of r leads to loss of symmetry. We show that in this case, neither the use of the symmetric ADI method preserves the symmetry of the solution. Finally, we perform the numerical error analysis of our method making use of the Wasserstein distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data used in the numerical tests of this paper are defined in the main text, Section 4.

Notes

  1. The numerical scheme is implemented in Matlab and the solution of the linear system is computed with the “\” command.

  2. To calculate the Wasserstein distances between two vectors, we make use of the matlab function available at https://github.com/nklb/wasserstein-distance.

References

  1. Albi, G., Artina, M., Foransier, M., Markowich, P.: Biological transportation networks: modeling and simulation. Anal. Appl. 14, 185–206 (2016). https://doi.org/10.1142/S0219530515400059

    Article  MathSciNet  MATH  Google Scholar 

  2. Albi, G., Burger, M., Haskovec, J., Markowich, P., Schlottbom, M.: Continuum Modelling of Biological Network Formation. Active Particles, vol. I: Theory, Models, Applications. Birkhäuser-Springer, Boston (2017)

    Google Scholar 

  3. Alcubierre, M., Schutz, B.F.: Time symmetric ADI and casual reconnection. In: International Workshop on Numerical Relativity. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: in Metric Spaces and in the Space of Probability Measures. Springer Sci. Bus. Media, Basel (2005). https://link.springer.com/book/10.1007/b137080

  5. Astuto, C., Boffi, D., Credali, F.: Finite element discretization of a biological network formation system: a preliminary study. arXiv:2303.10625 (2023)

  6. Astuto, C., Boffi, D., Haskovec, J., Markowich, P., Russo, G.: Comparison of two aspects of a PDE model for biological network formation. Math. Comput. Appl. 27, 87 (2022). https://doi.org/10.3390/mca27050087

    Article  Google Scholar 

  7. Carrillo, J.A., Toscani, G.: Wasserstein metric and large-time asymptotics of nonlinear diffusion equations. In: New Trends in Mathematical Physics: In Honour of the Salvatore Rionero 70th Birthday—Proceedings of the International Meeting (2004). https://doi.org/10.1142/9789812702319_0022

  8. Chen, Q., Jiang, L., Li, C., Hu, D., Bu, J., Cai, D., Du, J.: Haemodynamics-Driven Developmental Pruning of Brain Vasculature in Zebrafish. Public Library of Science, San Francisco (2012). https://doi.org/10.1371/journal.pone.0047617

    Book  Google Scholar 

  9. Eichmann, A., Le Noble, F., Autiero, M., Carmeliet, P.: Guidance of vascular and neural network formation. Curr. Opin. Neurobiol. 15, 108–115 (2005). https://doi.org/10.1016/j.conb.2005.08.012

    Article  Google Scholar 

  10. Fang, D., Jin, S., Markowich, P., Perthame, B.: Implicit and semi-implicit numerical schemes for the gradient flow of the formation of biological transport networks. SMAI J. Comput. Math. 5, 229–249 (2019). https://doi.org/10.5802/smai-jcm.59

    Article  MathSciNet  MATH  Google Scholar 

  11. Hacking, W.J., Van Bavel, E., Spaan, J.A.: Shear stress is not sufficient to control growth of vascular networks: a model study. Am. J. Physiol. Heart Circ. Physiol. 270, H364–H375 (1996). https://doi.org/10.1152/ajpheart.1996.270.1.H364

    Article  Google Scholar 

  12. Haskovec, J., Markowich, P., Pilli, G.: Tensor PDE model of biological network formation. Commun. Math. Sci. 20, 1173–1191 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haskovec, J., Markowich, P., Perthame, B.: Mathematical analysis of a PDE system for biological network formation. Comm. Partial Differential Equations 40, 918–956 (2015). https://doi.org/10.1080/03605302.2014.968792

    Article  MathSciNet  MATH  Google Scholar 

  14. Haskovec, J., Markowich, P., Perthame, B., Schlottbom, M.: Notes on a PDE system for biological network formation. Nonlinear Anal. 138, 127–155 (2016). https://doi.org/10.1016/j.na.2015.12.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Haskovec, J., Markowich, P., Portaro, S.: Emergence of biological transportation networks as a self-regulated process. Discrete Contin. Dyn. Syst. 43, 1499–1515 (2022). https://doi.org/10.3934/dcds.2022159

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, D.: Optimization, Adaptation, and Initialization of Biological Transport Networks. Notes from Lecture 1, 3–1 (2013)

    Google Scholar 

  17. Hu, D., Cai, D.: Adaptation and optimization of biological transport networks. Phys. Rev. Lett. 111, 138701 (2013). https://doi.org/10.1103/PhysRevLett.110.138101

    Article  Google Scholar 

  18. Hu, D., Cai, D.: An optimization principle for initiation and adaptation of biological transport networks. Commun. Math. Sci. 17, 1427–1436 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, D., Cai, D., Rangan, A.V.: Blood vessel adaptation with fluctuations in capillary flow distribution. PLoS One 7, 45444 (2012). https://doi.org/10.1371/journal.pone.0044797

    Article  Google Scholar 

  20. Malinowski, R.: Understanding of leaf development—the science of complexity. Plants 2, 396–415 (2013). https://doi.org/10.3390/plants2040541

    Article  Google Scholar 

  21. Michel, O., Biondi, J.: Morphogenesis of neural networks. Neural Process. Lett. 2, 9–12 (1995). https://doi.org/10.1007/BF02309873

    Article  Google Scholar 

  22. Otto, F.: Double Degenerate Diffusion Equations as Steepest Descent. Bonn University (1996). https://books.google.com.sa/books?id=oxLdGwAACAAJ

  23. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26, 101–174 (2001). https://doi.org/10.1081/PDE-100002243

    Article  MathSciNet  MATH  Google Scholar 

  24. Peaceman, D.W., Rachford, H.H., Jr.: The numerical solution of parabolic and elliptic equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pohl, U., Holtz, J., Busse, R., Bassenge, E.: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8, 37–44 (1986). https://doi.org/10.1161/01.hyp.8.1.37

    Article  Google Scholar 

  26. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. Heart Circ. Physiol. 275, H349–H360 (1998). https://doi.org/10.1152/ajpheart.1998.275.2.H349

    Article  Google Scholar 

  27. Raudino, A., Grassi, A., Lombardo, G., Russo, G., Astuto, C., Corti, M.: Anomalous sorption kinetics of self-interacting particles by a spherical trap. Commun. Comput. Phys. 31, 707–738 (2022). https://doi.org/10.4208/cicp.OA-2021-0101

    Article  MathSciNet  MATH  Google Scholar 

  28. Santambrogio, F.: Euclidean, metric, and Wasserstein gradient flows: an overview. Bull. Math. Sci. 7, 87–154 (2017). https://doi.org/10.1007/s13373-017-0104-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Sedmera, D.: Function and Form in the Developing Cardiovascular System. Cardiovascular Research. Oxford University Press, Oxford (2011). https://doi.org/10.1093/cvr/cvr228

    Book  Google Scholar 

  30. Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)

  31. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  32. Villani, C.: Couplings and changes of variables. In: Optimal Transport. Grundlehren der mathematischen Wissenschaften, vol 338. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9_1

Download references

Funding

The authors declare no external funding.

Author information

Authors and Affiliations

Authors

Contributions

PM and JH modeled the systems that govern this work. CA, DB, and GR set the methodologies and numerical schemes that were used. CA validated the results and wrote the original draft. CA, JH, and GR wrote, reviewed, and edited the manuscript. DB acquired funding and provided resources.

Corresponding author

Correspondence to Clarissa Astuto.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Consent to Participate and for Publication

All the authors consent their participation and agree to the published version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astuto, C., Boffi, D., Haskovec, J. et al. Asymmetry and Condition Number of an Elliptic-Parabolic System for Biological Network Formation. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00297-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00297-3

Keywords

Mathematics Subject Classification

Navigation