Skip to main content
Log in

An Improved Coupled Level Set and Continuous Moment-of-Fluid Method for Simulating Multiphase Flows with Phase Change

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid (MOF) algorithm for multiphase flows, initially described by Li et al. (2015), is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms. The Continuous MOF (CMOF) method is motivated in this article. The CMOF reconstruction method inherently removes the “checkerboard instability” that persists when using the MOF method on surface tension driven multiphase (multimaterial) flows. The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning (ML) algorithm. Multiphase flow examples are shown in the two-dimensional (2D), three-dimensional (3D) axisymmetric “RZ”, and 3D coordinate systems. Examples include two material and three material multiphase flows: bubble formation, the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank, freezing, and liquid lens dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Ahn, H.T., Shashkov, M.: Multi-material interface reconstruction on generalized polyhedral meshes. J. Comput. Phys. 226(2), 2096–2132 (2007)

    MathSciNet  Google Scholar 

  2. Ahn, H.T., Shashkov, M.: Adaptive moment-of-fluid method. J. Comput. Phys. 228(8), 2792–2821 (2009)

    MathSciNet  Google Scholar 

  3. Ancellin, M., Després, B., Jaouen, S.: Extension of generic two-component VOF interface advection schemes to an arbitrary number of components. J Comput. Phys. 473, 111721 (2022)

    MathSciNet  Google Scholar 

  4. Arienti, M., Sussman, M.: An embedded level set method for sharp-interface multiphase simulations of diesel injectors. Int. J. Multiph. Flow 59, 1–14 (2014)

    MathSciNet  Google Scholar 

  5. Asuri Mukundan, A., Ménard, T., Brändle de Motta, J.C., Berlemont, A.: A hybrid moment of fluid-level set framework for simulating primary atomization. J. Comput. Phys. 451, 110864 (2022)

    MathSciNet  Google Scholar 

  6. Bentz, M., Knoll, R., Hasan, M., Lin, C. Low-g fluid mixing: further results from the tank pressure control experiment. In: 29th Joint Propulsion Conference and Exhibit, AIAA-93-2423. AIAA (1993)

  7. Bentz, M., Meserole, J., Knoll, R.: Jet mixing in low gravity-results of the tank pressure control experiment. In: 28th Joint Propulsion Conference and Exhibit, p. 3060 (1992)

  8. Bonhomme, R., Magnaudet, J., Duval, F., Piar, B.: Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. J. Fluid Mech. 707, 405–443 (2012)

    Google Scholar 

  9. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    MathSciNet  Google Scholar 

  10. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1984)

  11. Caboussat, A., Francois, M.M., Glowinski, R., Kothe, D.B., Sicilian, J.M.: A numerical method for interface reconstruction of triple points within a volume tracking algorithm. Math. Comput. Model. 48(11), 1957–1971 (2008)

    MathSciNet  Google Scholar 

  12. Colella, P., Woodward, P.R.: The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    Google Scholar 

  13. Cummins, S.J., Francois, M.M., Kothe, D.B.: Estimating curvature from volume fractions. Comput. Struct. 83(6/7), 425–434 (2005)

    Google Scholar 

  14. De Gennes, P.-G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media, New York (2013)

    Google Scholar 

  15. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Los Alamos report LA-UR-05-7571 (2005)

  16. Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227(11), 5361–5384 (2008)

    MathSciNet  Google Scholar 

  17. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002)

    MathSciNet  Google Scholar 

  18. Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., Williams, M.W.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213(1), 141–173 (2006)

    Google Scholar 

  19. Gibou, F., Fedkiw, R.P., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)

    MathSciNet  Google Scholar 

  20. Glimm, J., Isaacson, E., Marchesin, D., McBryan, O.: Front tracking for hyperbolic systems. Adv. Appl. Math. 2(1), 91–119 (1981)

    MathSciNet  Google Scholar 

  21. Godunov, S.: Different methods for shock waves. PhD Dissertation. Moscow State University (1954)

  22. Godunov, S., Bohachevsky, I.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik 47(3), 271–306 (1959)

    Google Scholar 

  23. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135(2), 260–278 (1997)

    Google Scholar 

  24. Helsby, F., Tuson, K.: Behaviour of air bubbles in aqueous solutions. Research 8, 270–275 (1955)

    Google Scholar 

  25. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Google Scholar 

  26. Hu, H., Jin, Z.: An icing physics study by using lifetime-based molecular tagging thermometry technique. Int. J. Multiph. Flow 36(8), 672–681 (2010)

    Google Scholar 

  27. Huang, Z., Lin, G., Ardekani, A.M.: Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows. J. Comput. Phys. 406, 109192 (2020)

    MathSciNet  Google Scholar 

  28. Huang, Z., Lin, G., Ardekani, A.M.: A consistent and conservative phase-field model for thermo-gas-liquid-solid flows including liquid-solid phase change. J. Comput. Phys. 449, 110795 (2022)

    MathSciNet  Google Scholar 

  29. Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y.: A coupled level set-moment of fluid method for incompressible two-phase flows. J. Sci. Comput. 54(2/3), 454–491 (2013)

    MathSciNet  Google Scholar 

  30. Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method with moment of fluid interface representation. J. Comput. Phys. 279, 182–217 (2014)

    MathSciNet  Google Scholar 

  31. Kim, J.: Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Engrg. 196(45), 4779–4788 (2007)

    MathSciNet  Google Scholar 

  32. Kucharik, M., Garimella, R.V., Schofield, S.P., Shashkov, M.J.: A comparative study of interface reconstruction methods for multi-material ALE simulations. J. Comput. Phys. 229(7), 2432–2452 (2010)

    MathSciNet  Google Scholar 

  33. Li, G., Lian, Y., Guo, Y., Jemison, M., Sussman, M., Helms, T., Arienti, M.: Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method. Int. J. Numer. Meth. Fluids 79(9), 456–490 (2015)

    MathSciNet  Google Scholar 

  34. Liu, Y., Sussman, M., Lian, Y., Hussaini, M.Y., Vahab, M., Shoele, K.: A novel supermesh method for computing solutions to the multi-material Stefan problem with complex deforming interfaces and microstructure. J. Sci. Comput. 91(1), 1–40 (2022)

    MathSciNet  Google Scholar 

  35. Lyu, S., Wang, K., Zhang, Z., Pedrono, A., Sun, C., Legendre, D.: A hybrid VOF-IBM method for the simulation of freezing liquid films and freezing drops. J. Comput. Phys. 432, 110160 (2021)

    MathSciNet  Google Scholar 

  36. Markstein, G.: Interaction of flow pulsations and flame propagation. J. Aeronaut. Sci. 18(6), 428–429 (1951)

    Google Scholar 

  37. Miao, F., Wu, B., Sun, Z., Peng, C.: Calibration method of the laser beam based on liquid lens for 3D precise measurement. Measurement 178, 109358 (2021)

    Google Scholar 

  38. Milcent, T., Lemoine, A.: Moment-of-fluid analytic reconstruction on 3D rectangular hexahedrons. J. Comput. Phys. 409, 109346 (2020)

    MathSciNet  Google Scholar 

  39. Ohta, M., Kikuchi, D., Yoshida, Y., Sussman, M.: Robust numerical analysis of the dynamic bubble formation process in a viscous liquid. Int. J. Multiph. Flow 37(9), 1059–1071 (2011)

    Google Scholar 

  40. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)

    MathSciNet  Google Scholar 

  41. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    MathSciNet  Google Scholar 

  42. Pathak, A., Raessi, M.: A three-dimensional volume-of-fluid method for reconstructing and advecting three-material interfaces forming contact lines. J. Comput. Phys. 307, 550–573 (2016)

    MathSciNet  Google Scholar 

  43. Pei, C., Vahab, M., Sussman, M., Hussaini, M.Y.: A hierarchical space-time spectral element and moment-of-fluid method for improved capturing of vortical structures in incompressible multi-phase/multi-material flows. J. Sci. Comput. 81(3), 1527–1566 (2019)

    MathSciNet  Google Scholar 

  44. Qiu, R., Huang, R., Xiao, Y., Wang, J., Zhang, Z., Yue, J., Zeng, Z., Wang, Y.: Physics-informed neural networks for phase-field method in two-phase flow. Phys. Fluids 34(5), 052109 (2022)

    Google Scholar 

  45. Remmerswaal, R.A., Veldman, A.E.: Parabolic interface reconstruction for 2D volume of fluid methods. J. Comput. Phys. 469, 111473 (2022)

    MathSciNet  Google Scholar 

  46. Salas, M.D.: Shock fitting method for complicated two-dimensional supersonic flows. AIAA J. 14(5), 583–588 (1976)

    MathSciNet  Google Scholar 

  47. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)

    MathSciNet  Google Scholar 

  48. Schofield, S.P., Garimella, R.V., Francois, M.M., Loubère, R.: Material order-independent interface reconstruction using power diagrams. Int. J. Numer. Meth. Fluids 56(6), 643 (2008)

    MathSciNet  Google Scholar 

  49. Schofield, S.P., Garimella, R.V., Francois, M.M., Loubère, R.: A second-order accurate material-order-independent interface reconstruction technique for multi-material flow simulations. J. Comput. Phys. 228(3), 731–745 (2009)

    MathSciNet  Google Scholar 

  50. Shetabivash, H., Dolatabadi, A., Paraschivoiu, M.: A multiple level-set approach for modelling containerless freezing process. J. Comput. Phys. 415, 109527 (2020)

    MathSciNet  Google Scholar 

  51. Shin, S., Juric, D.: A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques. Int. J. Numer. Meth. Fluids 60(7), 753–778 (2009)

    Google Scholar 

  52. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    MathSciNet  Google Scholar 

  53. Sijoy, C., Chaturvedi, S.: Volume-of-fluid algorithm with different modified dynamic material ordering methods and their comparisons. J. Comput. Phys. 229(10), 3848–3863 (2010)

    MathSciNet  Google Scholar 

  54. Smith, K.A., Solis, F.J., Chopp, D.: A projection method for motion of triple junctions by level sets. Interfac Free Bound 4(3), 263–276 (2002)

    MathSciNet  Google Scholar 

  55. Starinshak, D.P., Karni, S., Roe, P.L.: A new level set model for multimaterial flows. J. Comput. Phys. 262, 1–16 (2014)

    MathSciNet  Google Scholar 

  56. Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187(1), 110–136 (2003)

    MathSciNet  Google Scholar 

  57. Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447–2471 (2009)

    MathSciNet  Google Scholar 

  58. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    MathSciNet  Google Scholar 

  59. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Google Scholar 

  60. Tatebe, O.: The multigrid preconditioned conjugate gradient method. In: the Sixth Copper Mountain Conference on Multigrid Methods, Part 2. NASA, Copper Mountain (1993)

  61. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)

    Google Scholar 

  62. Vahab, M., Pei, C., Hussaini, M.Y., Sussman, M., Lian, Y.: An adaptive coupled level set and moment-of-fluid method for simulating droplet impact and solidification on solid surfaces with application to aircraft icing. In: 54th AIAA Aerospace Sciences Meeting, p. 1340 (2016)

  63. Vahab, M., Sussman, M., Shoele, K.: Fluid-structure interaction of thin flexible bodies in multi-material multi-phase systems. J. Comput. Phys. 429, 110008 (2021)

    MathSciNet  Google Scholar 

  64. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Google Scholar 

  65. Vu, T.V., Tryggvason, G., Homma, S., Wells, J.C.: Numerical investigations of drop solidification on a cold plate in the presence of volume change. Int. J. Multiph. Flow 76, 73–85 (2015)

    MathSciNet  Google Scholar 

  66. Welch, S.W., Wilson, J.: A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160(2), 662–682 (2000)

    Google Scholar 

  67. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sussman.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This material is based upon work supported by the National Aeronautics and Space Administration under grant number 80NSSC20K0352.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Estebe, C., Liu, Y. et al. An Improved Coupled Level Set and Continuous Moment-of-Fluid Method for Simulating Multiphase Flows with Phase Change. Commun. Appl. Math. Comput. 6, 1034–1069 (2024). https://doi.org/10.1007/s42967-023-00286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-023-00286-6

Keywords

Mathematics Subject Classification

Navigation