Skip to main content
Log in

L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., Caputo derivative, while the local discontinuous Galerkin (LDG) method is used to discretize the spatial derivative. If the solution has strong temporal regularity, i.e., its second derivative with respect to time being right continuous, then the L1 scheme on uniform meshes (uniform L1 scheme) is utilized. If the solution has weak temporal regularity, i.e., its first and/or second derivatives with respect to time blowing up at the starting time albeit the function itself being right continuous at the beginning time, then the L1 scheme on non-uniform meshes (non-uniform L1 scheme) is applied. Then both uniform L1/LDG and non-uniform L1/LDG schemes are constructed. They are both numerically stable and the \(L^2\) optimal error estimate for the velocity is obtained. Numerical examples support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asgari, Z., Hosseini, S.M.: Efficient numerical schemes for the solution of generalized time fractional Burgers type equations. Numer. Algor. 77(3), 763–792 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hussein, A.J.: A weak Galerkin finite element method for solving time-fractional coupled Burgers’ equations in two dimensions. Appl. Numer. Math. 156, 265–275 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

    Book  Google Scholar 

  6. Li, C.P., Li, D.X., Wang, Z.: L1/LDG method for the generalized time-fractional Burgers equation. Math. Comput. Simul. 187, 357–378 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, C.P., Li, Z.Q., Wang, Z.: Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 85(2), 41 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, C.P., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: numerical analysis. Appl. Numer. Math. 140, 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, C.P., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: mathematical analysis. Appl. Numer. Math. 150, 587–606 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C.P., Wang, Z.: The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math. Comput. Simul. 169, 51–73 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, C.P., Wang, Z.: Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution. Math. Comput. Simul. 182, 838–857 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C.P., Wang, Z.: Numerical methods for the time fractional convection-diffusion-reaction equation. Numer. Funct. Anal. Optim. 42(10), 1115–1153 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  14. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Majeed, A., Kamran, M., Iqbal, M.K., Baleanu, D.: Solving time fractional Burgers’ and Fishers’ equations using cubic B-spline approximation method. Adv. Differ. Equ. 2020, 175 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mao, Z., Karniadakis, G.E.: Fractional Burgers equation with nonlinear non-locality: spectral vanishing viscosity and local discontinuous Galerkin methods. J. Comput. Phys. 336, 143–163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87, 2259–2272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ren, J., Liao, H., Zhang, J., Zhang, Z.: Sharp \(H^1\)-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. J. Comput. Appl. Math. 389, 113352 (2021)

    Article  MATH  Google Scholar 

  21. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluild Mech. 225, 631–653 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76, 1252–1273 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit-explicit time-marching for multidimensional convection-diffusion problems. ESAIM M2AN 50(4), 1083–1105 (2016)

    Article  MATH  Google Scholar 

  26. Yuan, W., Chen, Y., Huang, Y.: A local discontinuous Galerkin method for time-fractional Burgers equations. E. Asian J. Appl. Math. 10(4), 818–837 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Liu, F., Lin, Z., Anh, V.: Analytical and numerical solutions of a multi-term time-fractional Burgers’ fluid model. Appl. Math. Comput. 356, 1–12 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interests/competing interests.

Additional information

The work was supported by the National Natural Science Foundation of China (Nos. 11671251 and 12101266).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, D. & Wang, Z. L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions. Commun. Appl. Math. Comput. 5, 1299–1322 (2023). https://doi.org/10.1007/s42967-022-00199-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00199-w

Keywords

Mathematics Subject Classification

Navigation