Skip to main content
Log in

Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section. Under the conical assumption, the three-dimensional (3-D) steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles. Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane, we construct a classical conical-supersonic solution near the curve under some reasonable assumptions. To overcome the difficulty caused by the parabolic degeneracy, we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane. The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully. We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bakker, P., Bannink, W., Reyn, J.: Potential flow near conical stagnation points. J. Fluid Mech. 105, 239–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, S., Li, D.: Conical shock waves for isentropic Euler system. Proc. R. Soc. Edinb. 135A, 1109–1127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S., Li, D.: Conical shock waves in supersonic flow. J. Differ. Equ. 269, 595–611 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Xin, Z., Yin, H.: Global shock wave for the supersonic flow past a perturbed cone. Commun. Math. Phys. 228, 47–84 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Interscience, New York (1948)

    MATH  Google Scholar 

  6. Cui, D., Yin, H.: Global supersonic conic shock wave for the steady supersonic flow past a cone: polytropic gas. J. Differ. Equ. 246, 641–669 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, Z., Zhang, T.: Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics. Arch. Ration. Mech. Anal. 155, 277–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferri, A.: Supersonic flow around circular cones at angles of attack. NACA Rep. No. 1045, 1–11 (1951)

    MathSciNet  Google Scholar 

  9. Guan, J., Sritharan, S.: A hyperbolic-elliptic type conservation law on unit sphere that arises in delta wing aerodynamics. Int. J. Contemp. Math. Sci. 3, 721–737 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Holloway, I., Sritharan, S.: Compressible Euler equations on a sphere and elliptic-hyperbolic property. IMA J. Appl. Math. 86, 165–187 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, Y., Chen, J.: Sonic-supersonic solutions to a mixed-type boundary value problem for the 2-D full Euler equations. SIAM J. Math. Anal. 53, 1579–1629 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Y., Li, F.: On a degenerate hyperbolic problem for the 3-D steady full Euler equations with axial-symmetry. Adv. Nonlinear Anal. 10, 584–615 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, Y., Li, J.: Sonic-supersonic solutions for the two-dimensional steady full Euler equations. Arch. Ration. Mech. Anal. 235, 1819–1871 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, Y., Li, J.: On a global supersonic-sonic patch characterized by 2-D steady full Euler equations. Adv. Differ. Equ. 25, 213–254 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Lai, G., Sheng, W.: Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics. J. Math. Pure Appl. 104, 179–206 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, F., Hu, Y.: On a degenerate mixed-type boundary value problem to the 2-D steady Euler equations. J. Differ. Equ. 267, 6265–6289 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J., Witt, I., Yin, H.: On the global existence and stability of a three-dimensional supersonic conic shock wave. Commun. Math. Phys. 329, 609–640 (2014)

    Article  MATH  Google Scholar 

  18. Li, J., Zheng, Y.: Interaction of rarefaction waves of the two-dimensional self-similar Euler equations. Arch. Ration. Mech. Anal. 193, 623–657 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zheng, Y.: Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations. Commun. Math. Phys. 296, 303–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, L., Xu, G., Yin, H.: On the instability problem of a 3-D transonic oblique shock wave. Adv. Math. 282, 443–515 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, M., Zheng, Y.: Semi-hyperbolic patches of solutions of the two-dimensional Euler equations. Arch. Ration. Mech. Anal. 201, 1069–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lien, W., Liu, T.: Nonlinear stability of a self-similar 3-dimensional gas flow. Commun. Math. Phys. 204, 525–549 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Melnik, R.: Vortical singularities in conical flow. AIAA J. 5, 631–637 (1967)

    Article  MATH  Google Scholar 

  24. Nikolskii, A., Taganov, G.: Gas motion in a local supersonic region and conditions of potential flow breakdown, NACA Technical Memorandum, No. 1213 (1949)

  25. Reyn, J.: Differential-geometric considerations on the hodograph transformation for irrotational conical flows. Arch. Ration. Mech. Anal. 6, 299–354 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salas, M.: Flow patterns near a conical sonic line. In: 17th Aerospace Sciences Meeting, New Orleans, LA, No. 79-0341 (1979)

  27. Sheng, W., You, S.: Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow. J. Math. Pures Appl. 114, 29–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith, J.: Remarks on the structure of conical flow. Prog. Aerospace Sci. 12, 241–272 (1972)

    Article  Google Scholar 

  29. Song, K., Wang, Q., Zheng, Y.: The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics. SIAM J. Math. Anal. 47, 2200–2219 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sritharan, S.: Nonlinear aerodynamics of conical delta wings. Ph.D. thesis, Applied Mathematics, University of Arizona, Tucson, USA (1982)

  31. Sritharan, S.: Delta wings with shock-free cross flow. Quart. Appl. Math. 43, 275–286 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stocker, P., Mauger, F.: Supersonic flow past cones of general cross-section. J. Fluid Mech 13, 383–399 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, G., Yin, H.: Global multidimensional transonic conic shock wave for the perturbed supersonic flow past a cone. SIAM J. Math. Anal. 41, 178–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, G., Yin, H.: Instability of one global transonic shock wave for the steady supersonic Euler flow past a sharp cone. Nagoya Math. J. 199, 151–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, G., Yin, H.: Nonexistence of global weak solution with only one stable supersonic conic shock wave for the steady supersonic Euler flow past a perturbed cone. Quart. Appl. Math. 70, 199–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, T., Zheng, Y.: Sonic-supersonic solutions for the steady Euler equations. Indiana Univ. Math. J. 63, 1785–1817 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two referees for very helpful comments and suggestions to improve the quality of the paper. This work was partially supported by the Natural Science Foundation of Zhejiang province of China (LY21A010017), and the National Natural Science Foundation of China (12071106, 12171130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A The Derivation of System (14)

The first three equations in system (14) can be easily acquired. We here just derive the fourth equation of (14) and the last equation can be derived symmetrically. Putting (10) and (11) into the fourth equation of (7) yields

$$\begin{aligned}&c\frac{\sin \sigma }{\sin \omega }{{\tilde{\partial }}}^+\bigg (c\frac{\cos \sigma }{\sin \omega }\bigg ) -c\frac{\cos \sigma }{\sin \omega }{{\tilde{\partial }}}^+\bigg (c\frac{\sin \sigma }{\sin \omega }\bigg ) -c\frac{\cos \omega }{\sin \omega }\frac{{{\tilde{\partial }}}^+p}{\gamma p} \nonumber \\& =\frac{c^2}{\sin ^2\omega }\sin \alpha \cot \theta +uv\sin \alpha -uw\cos \alpha . \end{aligned}$$
(A1)

Recalling the definition of B gives

$$\begin{aligned} B=\frac{q^2}{2}+\frac{c^2}{\gamma -1}&=\bigg (\frac{1}{2\sin ^2\omega }+\frac{1}{\gamma -1}\bigg )c^2 =\frac{\gamma (\kappa +\sin ^2\omega )}{2\kappa \sin ^2\omega }\cdot \frac{p}{\rho }. \end{aligned}$$

Then we use the entropy function \(S=p\rho ^{-\gamma }\) to find that

$$\begin{aligned} \ln p=\frac{\gamma }{2\kappa }\bigg (\ln B-\frac{1}{\gamma }\ln S-\ln \frac{\gamma (\kappa +\sin ^2\omega )}{2\kappa \sin ^2\omega }\bigg ). \end{aligned}$$

Thus we get

$$\begin{aligned} \frac{1}{\gamma p}{\tilde{\partial }}^+p=\frac{1}{2\kappa }{\tilde{\partial }}^+\bigg (\ln B-\frac{1}{\gamma }\ln S\bigg )+\frac{{\tilde{\partial }}^+\sin \omega }{(\kappa +\sin ^2\omega )\sin \omega }. \end{aligned}$$

Inserting the above into (A1) leads to

$$\begin{aligned}&c^2\frac{\sin \sigma }{\sin \omega }\cdot \frac{-\sin \sigma \sin \omega {\tilde{\partial }}^+\sigma -\cos \sigma {\tilde{\partial }}^+\sin \omega }{\sin ^2\omega } -c^2\frac{\cos \sigma }{\sin \omega }\cdot \frac{\cos \sigma \sin \omega {\tilde{\partial }}^+\sigma -\sin \sigma {\tilde{\partial }}^+\sin \omega }{\sin ^2\omega }\\& -c^2\cot \omega \cdot \bigg [\frac{1}{2\kappa }{\tilde{\partial }}^+\bigg (\ln B-\frac{1}{\gamma }\ln S\bigg )+\frac{{\tilde{\partial }}^+\sin \omega }{(\kappa +\sin ^2\omega )\sin \omega }\bigg ]\\&=\frac{c^2}{\sin ^2\omega }\sin \alpha \cot \theta +uc\frac{\cos \sigma }{\sin \omega }\sin \alpha -uc\frac{\sin \sigma }{\sin \omega }\cos \alpha , \end{aligned}$$

and doing a simplification arrives at

$$\begin{aligned}&{\tilde{\partial }}^+\theta +\frac{\cos \omega }{\kappa +\sin ^2\omega }{\tilde{\partial }}^+\sin \omega -\frac{\sin (2\omega )}{4\kappa }{\tilde{\partial }}^+\bigg (\frac{1}{\gamma }\ln S-\ln B\bigg ) \\& =-G\sqrt{\kappa +\sin ^2\omega }\sin \omega -\sin \alpha \cot \theta . \end{aligned}$$

Appendix B The Derivations of System (EQ-a)–(EQ-b)

The derivations are based on the commutator relations (21). We first provide some relations by simple calculations

$$\begin{aligned} {{\tilde{\partial }}}^+{{\tilde{\partial }}}^0G&=-\frac{2\sin ^2\omega }{\sqrt{\kappa +\sin ^2\omega }}(X+H)(1+\kappa G^2)+\frac{2\kappa GF}{\sqrt{\kappa +\sin ^2\omega }}, \\ \cos \omega {{\tilde{\partial }}}^0\alpha -{{\tilde{\partial }}}^+\sigma&=\sin \omega \cos \omega (X+Y)+\frac{\sin \omega (\kappa +\sin ^2\omega )}{\cos \omega }(X+Y)\\&\quad +2G\sqrt{\kappa +\sin ^2\omega }\sin \omega +\sin \omega \cos \sigma \cot \theta , \\ \cos \omega {{\tilde{\partial }}}^+\sigma -{{\tilde{\partial }}}^0\alpha&=-2\sin \omega \cos ^2\omega X -\sin \omega (Y-X)-\frac{\sin \omega (\kappa +\sin ^2\omega )}{\cos ^2\omega }(X+Y)\\&\quad -G\sqrt{\kappa +\sin ^2\omega }\sin \omega \cos \omega -\frac{G\sqrt{\kappa +\sin ^2\omega }\sin \omega }{\cos \omega } \\&\quad +\sin \sigma \cot \theta -\sin \alpha \cos \omega \cot \theta , \end{aligned}$$

and

$$\begin{aligned} {{\tilde{\partial }}}^0\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )&=\frac{G}{2\sqrt{\kappa +\sin ^2\omega }}, \\ {{\tilde{\partial }}}^+{{\tilde{\partial }}}^0\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )&=\frac{F-2G\sin ^2\omega (X+H)}{2\sqrt{\kappa +\sin ^2\omega }}. \end{aligned}$$

Making use of the commutator relation \(({{\tilde{\partial }}}^0, {{\tilde{\partial }}}^+)\) in (21), we achieve

$$\begin{aligned} {\tilde{\partial }}^0H&={{\tilde{\partial }}}^0{{\tilde{\partial }}}^+\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )\\&={{\tilde{\partial }}}^+{{\tilde{\partial }}}^0\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )+\frac{\cos \omega {{\tilde{\partial }}}^0\alpha -{{\tilde{\partial }}}^+\sigma }{\sin \omega }{{\tilde{\partial }}}^+\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )\\&\quad +\frac{\cos \omega {{\tilde{\partial }}}^+\sigma -{{\tilde{\partial }}}^0\alpha }{\sin \omega }{{\tilde{\partial }}}^0\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )\\&\quad -\cot \theta \bigg [\cos \sigma H-\cos \alpha \cdot {{\tilde{\partial }}}^0\bigg (\frac{1}{4\kappa \gamma }\ln S-\frac{1}{4\kappa }\ln B\bigg )\bigg ]. \end{aligned}$$

Putting the previous relations into the above and simplifying the resulting gets

$$\begin{aligned} {\tilde{\partial }}^0H =&\frac{F}{2\sqrt{\kappa +\sin ^2\omega }}-\frac{G(\kappa +1)(X+Y)}{2\cos ^2\omega \sqrt{\kappa +\sin ^2\omega }} +\frac{GH(2\kappa +\sin ^2\omega )}{\sqrt{\kappa +\sin ^2\omega }}\\&+\frac{(\kappa +1)(X+Y)H}{\cos \omega }-\frac{(1+\cos ^2\omega )G^2}{2\cos \omega }, \end{aligned}$$

which is the equation of H in (EQ-a). Similarly, one has the equation of F in (EQ-a)

$$\begin{aligned} {\tilde{\partial }}^0F=&{\tilde{\partial }}^+{\tilde{\partial }}^0G +\frac{\cos \omega {\tilde{\partial }}^0\alpha -{\tilde{\partial }}^+\sigma }{\sin \omega }F +\frac{\cos \omega {\tilde{\partial }}^+\sigma -{\tilde{\partial }}^0\alpha }{\sin \omega }{\tilde{\partial }}^0G -\cot \theta (\cos \sigma F-\cos \alpha {{\tilde{\partial }}}^0G)\\ =&-\frac{2\sin ^2\omega (1+\kappa G^2)H}{\sqrt{\kappa +\sin ^2\omega }}-\frac{(\kappa +1)(1+\kappa G^2)(X+Y)}{\cos ^2\omega \sqrt{\kappa +\sin ^2\omega }}+\frac{2GF(2\kappa +\sin ^2\omega )}{\sqrt{\kappa +\sin ^2\omega }}\\&+\frac{(\kappa +1)(X+Y)F}{\cos \omega }-\frac{(1+\cos ^2\omega )(1+\kappa G^2)G}{\cos \omega }. \end{aligned}$$

We now derive the equation of X. By the commutator relation \(({\tilde{\partial }}^-,{\tilde{\partial }}^+)\) in (21), it suggests that

$$\begin{aligned}&{\tilde{\partial }}^-{\tilde{\partial }}^+\sigma -{\tilde{\partial }}^+{\tilde{\partial }}^-\sigma \nonumber \\& =\frac{\cos (2\omega ){\tilde{\partial }}^-\alpha -{\tilde{\partial }}^+\beta }{\sin (2\omega )}{\tilde{\partial }}^+\sigma +\frac{\cos (2\omega ){\tilde{\partial }}^+\beta -{\tilde{\partial }}^-\alpha }{\sin (2\omega )}{\tilde{\partial }}^-\sigma -\cot \theta (\cos \beta {{\tilde{\partial }}}^+\sigma -\cos \alpha {{\tilde{\partial }}}^-\sigma ), \end{aligned}$$
(B1)

and

$$\begin{aligned}&{\tilde{\partial }}^-X-{\tilde{\partial }}^+Y \nonumber \\& =\frac{\cos (2\omega ){\tilde{\partial }}^-\alpha -{\tilde{\partial }}^+\beta }{\sin (2\omega )}X +\frac{\cos (2\omega ){\tilde{\partial }}^+\beta -{\tilde{\partial }}^-\alpha }{\sin (2\omega )}Y-\cot \theta (\cos \beta X-\cos \alpha Y). \end{aligned}$$
(B2)

Moreover, one differentiates (16) along the directions \({{\tilde{\partial }}}^-\) and \({{\tilde{\partial }}}^+\) to find that

$$\begin{aligned} {\tilde{\partial }}^-{\tilde{\partial }}^+\sigma =&-2\cos (2\omega )X{{\tilde{\partial }}}^-\omega -\sin (2\omega ){{\tilde{\partial }}}^-X-{{\tilde{\partial }}}^-G\sqrt{\kappa +\sin ^2\omega }\sin \omega -\frac{G\sin ^2\omega \cos \omega {{\tilde{\partial }}}^-\omega }{\sqrt{\kappa +\sin ^2\omega }}\\&-G\sqrt{\kappa +\sin ^2\omega }\cos \omega {{\tilde{\partial }}}^-\omega -\cos \alpha \cot \theta {{\tilde{\partial }}}^-\alpha +\sin \alpha \csc ^2\theta {{\tilde{\partial }}}^-\theta ,\\ {\tilde{\partial }}^+{\tilde{\partial }}^-\sigma =&2\cos (2\omega )Y{{\tilde{\partial }}}^+\omega +\sin (2\omega ){{\tilde{\partial }}}^+Y+{{\tilde{\partial }}}^+G\sqrt{\kappa +\sin ^2\omega }\sin \omega +\frac{G\sin ^2\omega \cos \omega {{\tilde{\partial }}}^+\omega }{\sqrt{\kappa +\sin ^2\omega }}\\&+G\sqrt{\kappa +\sin ^2\omega }\cos \omega {{\tilde{\partial }}}^+\omega -\cos \beta \cot \theta {{\tilde{\partial }}}^+\beta +\sin \beta \csc ^2\theta {{\tilde{\partial }}}^+\theta . \end{aligned}$$

We insert the above into (B1) and do a simplification to deduce

$$\begin{aligned}&\sin (2\omega )({{\tilde{\partial }}}^-X+{{\tilde{\partial }}}^+Y)\\& =-2\cos (2\omega )(X{{\tilde{\partial }}}^-\omega +Y{{\tilde{\partial }}}^+\omega ) -\sin (2\omega )(1+\kappa G^2)-\frac{G\cos \omega (\kappa +2\sin ^2\omega )}{\sqrt{\kappa +\sin ^2\omega }}({{\tilde{\partial }}}^+\omega +{{\tilde{\partial }}}^-\omega )\\& \quad-\cot \theta (\cos \alpha {{\tilde{\partial }}}^-\alpha -\cos \beta {{\tilde{\partial }}}^+\beta )+\csc ^2\theta (\sin \alpha {{\tilde{\partial }}}^-\theta -\sin \beta {{\tilde{\partial }}}^+\theta )\\&\quad +\cot \theta (\cos \beta {{\tilde{\partial }}}^+\sigma -\cos \alpha {{\tilde{\partial }}}^-\sigma ) -\frac{\cos (2\omega ){{\tilde{\partial }}}^-\alpha -{{\tilde{\partial }}}^+\beta }{\sin (2\omega )}{{\tilde{\partial }}}^+\sigma -\frac{\cos (2\omega ) {{\tilde{\partial }}}^+\beta -{{\tilde{\partial }}}^-\alpha }{\sin (2\omega )}{{\tilde{\partial }}}^-\sigma , \end{aligned}$$

from which, (B2) and (20), we acquire

$$\begin{aligned} {\tilde{\partial }}^-X =&\frac{\cos (2\omega ){{\tilde{\partial }}}^-\alpha -{{\tilde{\partial }}}^+\beta -\cos (2\omega ){{\tilde{\partial }}}^-\omega }{\sin (2\omega )}X -\frac{\cos (2\omega ){{\tilde{\partial }}}^+\omega }{\sin (2\omega )}Y\nonumber \\&-\frac{\cot \theta }{2}(\cos \beta X-\cos \alpha Y) -\frac{G\sqrt{\kappa +\sin ^2\omega }(\kappa +2\sin ^2\omega )}{2\cos \omega }(X+Y)-\frac{1+\kappa G^2}{2} \nonumber \\&-\frac{G^2(\kappa +2\sin ^2\omega )}{2}+\frac{\csc ^2\theta }{2} +\frac{\cot \theta }{2\sin (2\omega )}(\cos \beta {{\tilde{\partial }}}^+\sigma -\cos \alpha {{\tilde{\partial }}}^-\sigma ) \nonumber \\&+\frac{G\sqrt{\kappa +\sin ^2\omega }\sin \omega }{2\sin ^2(2\omega )}[(\cos (2\omega )+1)({{\tilde{\partial }}}^-\alpha -{{\tilde{\partial }}}^+\beta )]. \end{aligned}$$
(B3)

Furthermore, we apply (16) to calculate

$$\begin{aligned}&{{\tilde{\partial }}}^-\alpha -{{\tilde{\partial }}}^+\beta \\&=\frac{2\sin \omega (\kappa +1)}{\cos \omega }(X+Y)+4G\sqrt{\kappa +\sin ^2\omega } \sin \omega +2\cot \theta \cos \sigma \sin \omega ,\\&\cos \beta {{\tilde{\partial }}}^+\sigma -\cos \alpha {{\tilde{\partial }}}^-\sigma \\& =-\sin (2\omega )(\cos \beta X+\cos \alpha Y)-G\sqrt{\kappa +\sin ^2\omega }\cos \sigma \sin (2\omega ) -\cot \theta \sin (2\omega ),\\&\frac{\cos (2\omega ){{\tilde{\partial }}}^-\alpha -{{\tilde{\partial }}}^+\beta -\cos (2\omega ){{\tilde{\partial }}}^-\omega }{\sin (2\omega )} \\& =\cos (2\omega )Y+X +G\sqrt{\kappa +\sin ^2\omega }\cos \omega +\frac{\kappa +\sin ^2\omega }{\cos ^2\omega }(X+H) +\cot \theta \cos \beta . \end{aligned}$$

It follows by combining with the above and (B3) that

$$\begin{aligned} {\tilde{\partial }}^-X=&\frac{\kappa +\sin ^2\omega }{\cos ^2\omega }(X+H)(X+Y)+X[\cos (2\omega )Y+X +G\sqrt{\kappa +\sin ^2\omega }\cos \omega ]\\&-2(\kappa +\sin ^2\omega )(X+H)Y+\frac{\cos (2\omega )\sqrt{\kappa +\sin ^2\omega }}{2\cos \omega }G(X+Y) -\frac{G^2}{2}+\frac{1}{2}, \end{aligned}$$

which is the equation of X in (EQ-b), and the equation of Y can be derived analogously.

Appendix C The Expressions of \(b_{ij}\) in System (45)

We here list the detailed expressions of \(b_{ij}(i=0,\cdots ,5;\, j=1,2,3)\) in system (45). The expressions of \(b_{01}\) and \(b_{11}\) are

$$\begin{aligned} b_{01}=&-\frac{1}{2\hbar ^2({\widetilde{X}}+{\widetilde{H}}+\Phi _0)}\big(2t\sqrt{1-t^2}\theta _{0}' {\widetilde{X}}+\hbar \theta _{0}'{\widetilde{G}}+\theta _{0}'\Phi _1+t\cos \zeta -\sqrt{1-t^2}\sin \zeta \big ),\\ b_{11}=&-\frac{1}{2\hbar ^2({\widetilde{X}}+{\widetilde{H}}+\Phi _0)}\bigg (2G_0't\sqrt{1-t^2}{\widetilde{X}} +G_0'\hbar {\widetilde{G}}+{\widetilde{F}}+F_0+\frac{(1+KG_{0}^2)t}{\sqrt{\kappa +1}}+G_0'\Phi _1\bigg ). \end{aligned}$$

The expressions of \(b_{2j}\ (j=1,2,3)\) are

$$\begin{aligned} b_{21}&=\frac{\kappa +1}{2\hbar ^2\sqrt{\kappa +1-t^2}},\quad b_{23}=-\frac{(\kappa +1)({\widetilde{H}}+H_0+\frac{G_0t}{2\sqrt{\kappa +1}})}{\hbar ^2},\\ b_{22}&=-\frac{1}{\hbar ^2}\big (b_{221}{\widetilde{X}}+b_{222}{\widetilde{Y}} +b_{223}{\widetilde{G}}+b_{224}{\widetilde{H}} +b_{225} +b_{226} \big ), \end{aligned}$$

where

$$\begin{aligned} b_{221}=&\sqrt{1-t^2}\bigg(H_0'+\frac{G_0't}{2\sqrt{\kappa +1}}\bigg) -\frac{G_0\hbar ^2}{2\sqrt{\kappa +1}\sqrt{\kappa +1-t^2} (\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})}\\&-\frac{G_0(\kappa +2-t^2)}{2\sqrt{\kappa +1-t^2}}, \\ b_{222}=&-\sqrt{1-t^2}\bigg(H_0'+\frac{G_0't}{2\sqrt{\kappa +1}}\bigg) -\frac{G_0(\kappa +2-t^2)}{2\sqrt{\kappa +1-t^2}} \\&-\frac{G_0\hbar ^2}{2\sqrt{\kappa +1}\sqrt{\kappa +1-t^2}(\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})}, \\ b_{223}=&\frac{\kappa -t^2}{\sqrt{\kappa +1-t^2}}\bigg(H_0+\frac{G_0t}{2\sqrt{\kappa +1}}\bigg) -\frac{G_0t(\kappa -t^2)}{\kappa +1-t^2}-\frac{G_0t(\kappa +2-t^2)}{2(\kappa +1-t^2)}\\&-\frac{G_0t(1-t^2)}{2\sqrt{\kappa +1}(\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})}, \\ b_{224}=&\frac{G_0(2\kappa +1-t^2)}{\sqrt{\kappa +1-t^2}}+(\kappa +1)(2a_1-\Psi _0),\\ b_{225}=&{\widetilde{F}}\frac{1}{2\sqrt{\kappa +1-t^2}}-{\widetilde{G}}^2\frac{t(\kappa -t^2)}{2(\kappa +1-t^2)} +{\widetilde{G}}{\widetilde{H}}\frac{\kappa -t^2}{\sqrt{\kappa +1-t^2}}, \\ b_{226}=&-\frac{G_0\Psi _0t(\kappa +2-t^2)}{2\sqrt{\kappa +1-t^2}}-\frac{G_0\Psi _0\hbar ^2t}{2\sqrt{\kappa +1}\sqrt{\kappa +1-t^2}(\sqrt{\kappa +1} +\sqrt{\kappa +1-t^2})} \\&+\frac{F_0+\frac{(1+\kappa G_0^2)t}{\sqrt{\kappa +1}}}{2\sqrt{\kappa +1-t^2}}-\Psi _1\bigg(H_0'+\frac{G_0't}{2\sqrt{\kappa +1}}\bigg)\\&+\frac{G_0(2\kappa +1-t^2)}{\sqrt{\kappa +1-t^2}}\bigg(H_0+\frac{G_0t}{2\sqrt{\kappa +1}}\bigg) +(2a_1-\Psi _0)(\kappa +1)\bigg(H_0+\frac{G_0t}{2\sqrt{\kappa +1}}\bigg)\\&-\frac{G_0^2t(\kappa -t^2)}{2(\kappa +1-t^2)}. \end{aligned}$$

The expressions of \(b_{3j}\ (j=1,2,3)\) are

$$\begin{aligned} b_{31}&=\frac{(\kappa +1)(\kappa {\widetilde{G}}+2\kappa G_0)}{\hbar ^2\sqrt{\kappa +1-t^2}},\quad b_{33}=-\frac{(\kappa +1)({\widetilde{F}}+F_0+\frac{(1+\kappa G_0^2)t}{\sqrt{\kappa +1}})}{\hbar ^2},\\ b_{32}&=-\frac{1}{\hbar ^2}\big (b_{321}{\widetilde{X}}+b_{322}{\widetilde{Y}} +b_{323}{\widetilde{G}}+b_{324} +b_{325} +b_{326} +b_{327} \big ), \end{aligned}$$

where

$$\begin{aligned} b_{321}=&\sqrt{1-t^2}\bigg(F_0'+\frac{2\kappa G_0G_0't}{\sqrt{\kappa +1}}\bigg) -\frac{(1+\kappa G_0^2)\hbar ^2}{\sqrt{\kappa +1}\sqrt{\kappa +1-t^2} (\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})} \\&-\frac{(1+\kappa G_0^2)(\kappa +2-t^2)}{\sqrt{\kappa +1-t^2}}, \\ b_{322}=&-\sqrt{1-t^2}\bigg(F_0'+\frac{2\kappa G_0G_0't}{\sqrt{\kappa +1}}\bigg) -\frac{(1+\kappa G_0^2)(\kappa +2-t^2)}{\sqrt{\kappa +1-t^2}} \\&-\frac{(1+\kappa G_0^2)\hbar ^2}{\sqrt{\kappa +1}\sqrt{\kappa +1-t^2}(\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})}, \\ b_{323}=&\frac{3\kappa +1-2t^2}{\sqrt{\kappa +1-t^2}}\bigg(F_0+\frac{(1+\kappa G_0^2)t}{\sqrt{\kappa +1}}\bigg) -\frac{4\kappa G_0(1-t^2)}{\sqrt{\kappa +1-t^2}}\bigg(H_0+\frac{G_0 t}{2\sqrt{\kappa +1}}\bigg) \\& -\frac{t(\kappa -t^2)}{\kappa +1-t^2}(1+3\kappa G_0^2)-\frac{(1+\kappa G_0^2)t(\kappa +2-t^2)}{\kappa +1-t^2} -\frac{(1+\kappa G_0^2)t(1-t^2)}{\sqrt{\kappa +1}(\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})}, \\ b_{324}=&-{\widetilde{H}}\cdot \frac{2(1-t^2)(1+\kappa G_0^2)}{\sqrt{\kappa +1-t^2}} +{\widetilde{F}}\bigg (\frac{2G_0(2\kappa +1-t^2)}{\sqrt{\kappa +1-t^2}}+(\kappa +1)(2a_1-\Psi _0)\bigg ), \\ b_{225}=&-{\widetilde{G}}^2\bigg (\frac{3\kappa G_0t(\kappa -t^2)}{\kappa +1-t^2}+\frac{2\kappa (1-t^2)}{\sqrt{\kappa +1-t^2}}\bigg(H_0+\frac{G_0t}{2\sqrt{\kappa +1}}\bigg)\bigg )\\&-{\widetilde{G}}{\widetilde{H}}\frac{4\kappa G_0(1-t^2)}{\sqrt{\kappa +1-t^2}} +{\widetilde{G}}{\widetilde{F}}\frac{3\kappa +1-2t^2}{\sqrt{\kappa +1-t^2}}, \\ b_{226}=&-{\widetilde{G}}^3\frac{\kappa t(\kappa -t^2)}{\kappa +1-t^2}-{\widetilde{G}}^2{\widetilde{H}}\frac{2\kappa (1-t^2)}{\sqrt{\kappa +1-t^2}}, \\ b_{227}=&-\Psi _1(F_0'+\frac{2\kappa G_0G_0't}{\sqrt{\kappa +1}})+\frac{2G_0(2\kappa +1-t^2)}{\sqrt{\kappa +1-t^2}}(F_0+\frac{(1+\kappa G_0^2)t}{\sqrt{\kappa +1}}) \\& +(2a_1-\Psi _0)(\kappa +1)\bigg(F_0+\frac{(1+\kappa G_0^2)t}{\sqrt{\kappa +1}}\bigg)-\frac{G_0t(1+\kappa G_0^2)(\kappa -t^2)}{\kappa +1-t^2}\\&-\frac{(1+\kappa G_0^2)(\kappa +2-t^2)\Psi _0t}{\sqrt{\kappa +1-t^2}} \\& -\frac{2(1-t^2)(1+\kappa G_0^2)}{\sqrt{\kappa +1-t^2}}\bigg(H_0+\frac{G_0t}{2\sqrt{\kappa +1}}\bigg)\\&-\frac{(1+\kappa G_0^2)\hbar ^2\Psi _0t}{\sqrt{\kappa +1}\sqrt{\kappa +1-t^2}(\sqrt{\kappa +1}+\sqrt{\kappa +1-t^2})}. \end{aligned}$$

The expressions of \(b_{4j}\ (j=1,2,3)\) are

$$\begin{aligned} b_{41}=&-\frac{1}{(1-t^2)({\widetilde{Y}}-{\widetilde{H}}+\frac{{\widetilde{G}}t}{\sqrt{\kappa +1-t^2}}+\Omega _0)}, \\ b_{42}=&-\frac{2a_1+\frac{G_0}{2\sqrt{\kappa +1-t^2}}}{(1-t^2)({\widetilde{Y}}-{\widetilde{H}} +\frac{{\widetilde{G}}t}{\sqrt{\kappa +1-t^2}}+\Omega _0)} \\&-\frac{(2t^2-1)G_0+(2t^2+1) {\widetilde{G}}}{4(1-t^2)\sqrt{\kappa +1-t^2}({\widetilde{Y}}-{\widetilde{H}}+\frac{{\widetilde{G}}t}{\sqrt{\kappa +1-t^2}}+\Omega _0)} +\frac{t}{2(1-t^2)},\\ b_{43}=&-\frac{1}{2\hbar ^2({\widetilde{Y}}-{\widetilde{H}}+\frac{{\widetilde{G}}t}{\sqrt{\kappa +1-t^2}}+\Omega _0)}\big (b_{431} {\widetilde{X}} +b_{432}{\widetilde{Y}} +b_{433}{\widetilde{G}} +b_{434}{\widetilde{H}} +b_{435} +b_{436} \big ), \end{aligned}$$

where

$$\begin{aligned} b_{431}=&(2t^2-1)(a_0+a_1t)+2(a_1t-a_0) +G_0t\sqrt{\kappa +1-t^2} -2(\kappa +1-t^2)(a_0+a_1t), \\ b_{432}=&(2t^2-1)(a_1t-a_0)-2(\kappa +1-t^2) \Phi _0+2a_1t(\kappa +1-t^2) -2t\sqrt{1-t^2}(a_1't-a_0'), \\ b_{433}=&t\sqrt{\kappa +1-t^2}(a_1t-a_0) +(2t^2+1)a_1\sqrt{\kappa +1-t^2}-G_0 \\&-(a_1't-a_0')\hbar +2a_1t\sqrt{\kappa +1-t^2}, \\ b_{434}=&-2(\kappa +1-t^2)(a_0+a_1t)-2a_1t(\kappa +1-t^2), \\ b_{435}=&{\widetilde{X}}^2-\frac{1}{2}{\widetilde{G}}^2+[(2t^2-1)-2(\kappa +1-t^2)]{\widetilde{X}}{\widetilde{Y}} +t\sqrt{\kappa +1-t^2}{\widetilde{X}}{\widetilde{G}}-2(\kappa +1-t^2){\widetilde{Y}}{\widetilde{H}}, \\ b_{436}=&(2t^2-1)(a_1t-a_0)(a_1t+a_0)+(a_1t-a_0)^2+G_0t\sqrt{\kappa +1-t^2}(a_1t-a_0)-\frac{G_0}{2} \\&+\frac{1}{2} -2(\kappa +1-t^2)(a_1t+a_0)\Phi _0+(2t^2-1)G_0a_1\sqrt{\kappa +1-t^2}-(a_1't-a_0')\Omega _1 \\&+ 2a_1(\kappa +1-t^2) \bigg (2a_1-\frac{G_0}{\sqrt{\kappa +1-t^2}} \bigg )+2a_1t(\kappa +1-t^2)\Omega _0. \end{aligned}$$

The expressions of \(b_{5j}\ (j=1,2,3)\) are

$$\begin{aligned} b_{51}=&-\frac{1}{(1-t^2)({\widetilde{X}}+{\widetilde{H}}+\Phi _0)}, \\ b_{52}=&-\frac{2a_1}{(1-t^2)({\widetilde{X}}+{\widetilde{H}} +\Phi _0)}-\frac{(2t^2+1)(G_0+{\widetilde{G}})}{4(1-t^2)\sqrt{\kappa +1-t^2}({\widetilde{X}}+{\widetilde{H}} +\Phi _0)}+\frac{t}{2(1-t^2)}, \\ b_{53}=&-\frac{1}{2\hbar ^2({\widetilde{X}}+{\widetilde{H}}+\Phi _0)}\big (b_{531}{\widetilde{X}} +b_{532}{\widetilde{Y}} +b_{533}{\widetilde{G}} +b_{534}{\widetilde{H}} +b_{535} +b_{536}\big ), \end{aligned}$$

where

$$\begin{aligned} b_{531}&=2t\sqrt{1-t^2} (a_0'+a_1't)+(2t^2-1)(a_0+a_1t) -2G_0t\sqrt{\kappa +1-t^2} \\&\quad +2(\kappa +1-t^2)\bigg(\Omega _0-\frac{G_0t}{\sqrt{\kappa +1-t^2}}\bigg)-2a_1t(\kappa +1-t^2), \\ b_{532}&=(2t^2-1)(a_1t-a_0)+2(a_0+a_1t) +G_0t\sqrt{\kappa +1-t^2}-2(\kappa +1-t^2)(a_1t-a_0), \\ b_{533}&=\hbar (a_0'+a_1't) +t\sqrt{\kappa +1-t^2}(a_0+a_1t)-G_0 \\&\quad +(2t^2+1)a_1\sqrt{\kappa +1-t^2} -2t\sqrt{\kappa +1-t^2}(a_1t-a_0), \\ b_{534}&=2(\kappa +1-t^2)(a_1t-a_0) -2a_1t(\kappa +1-t^2), \\ b_{535}&=-\frac{1}{2}{\widetilde{G}}^2+{\widetilde{X}}{\widetilde{Y}} [(2t^2-1)-2(\kappa +1-t^2)] -{\widetilde{X}}{\widetilde{G}}\cdot 2t\sqrt{\kappa +1-t^2} \\&\quad +{\widetilde{X}}{\widetilde{H}}\cdot 2(\kappa +1-t^2)+{\widetilde{Y}}{\widetilde{G}}\cdot t\sqrt{\kappa +1-t^2}, \\ b_{536}&=(2t^2-1)(a_1t-a_0)(a_1t+a_0)+(a_1t+a_0)^2 +G_0t\sqrt{\kappa +1-t^2}(a_1t+a_0)-\frac{G_0^2}{2} \\&\quad +\frac{1}{2}-2(\kappa +1-t^2)\bigg(\Omega _0-\frac{G_0t}{\sqrt{\kappa +1-t^2}}\bigg)(a_1t-a_0) +a_1G_0\sqrt{\kappa +1-t^2}(2t^2+1) \\&\quad -2G_0t\sqrt{\kappa +1-t^2}(a_1t-a_0)+4a_1^2(\kappa +1-t^2) -2a_1t(\kappa +1-t^2)\Phi _0+(a_0'+a_1't)\Phi _1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, X. Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations. Commun. Appl. Math. Comput. 5, 1053–1096 (2023). https://doi.org/10.1007/s42967-021-00185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00185-8

Keywords

Mathematics Subject Classification

Navigation