Skip to main content
Log in

A bivariate extension of three-parameter generalized crack distribution for loss severity modelling

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In this paper, we introduce a bivariate extension of three-parameter generalized crack distribution for modelling loss data. Some basic properties such as the conditional distribution and the measures of association are discussed, and a method of parameter estimation is offered. A simulation-based approach to compute bivariate value-at-risk under the model is also discussed. The proposed model and estimation method are illustrated with a model fitting exercise on a real catastrophic loss data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A brief review on the Birnbaum–Saunders, Gaussian crack and generalized crack distributions are given in Sect. 2.

  2. Here we drop the parameters in the expressions for the sake of notational ease.

  3. The computation of the coefficient of upper tail dependence is given in Appendix.

  4. If \(F(x_1, \cdots ,x_d)\) is partially increasing on \(\mathbf {R}^d_+ /(0,\cdots ,0)\) and \(\text{ E }(X_i) < \infty\), for \(i = 1, \cdots , d\). More details can be found on Cousin & Bernardino (2013). Note that the BVGCR models satisfies the regularity conditions provided that the second raw moment of the base distribution exists.

  5. Relying on the fact that the sample median is more robust than the sample mean, one may consider an alternative definition of multivariate VaR based on the conditional median. We do not pursue such approach in this paper since the theoretical properties of the alternative definition are yet to be studied.

  6. Data source: public.emdat.be.

  7. We use the R-function ‘decompose’ for the decomposition of time series.

  8. This issue is expected to be alleviated if the size of simulations is increased with a larger computational cost.

References

  • Bae, T., & Chen, J. (2017). On heavy-tailed crack distribution for loss severity modeling. International Journal of Statistics and Probability, 6, 92–110.

    Article  Google Scholar 

  • Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular Variation. Cambridge University Press.

    Book  Google Scholar 

  • Birnbaum, Z. W., & Saunders, S. C. (1969). Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability, 6, 328–347.

    Article  MathSciNet  Google Scholar 

  • Birnbaum, Z. W., & Saunders, S. C. (1969). A new family of life distributions. Journal of Applied Probability, 6, 319–327.

    Article  MathSciNet  Google Scholar 

  • Cousin, A., & Bernardino, E. D. (2013). On multivariate extensions of value-at-risk. Journal of Multivariate Analysis, 119, 32–46.

    Article  MathSciNet  Google Scholar 

  • Daniels, H. E. (1950). Rank correlation and population models. Journal of the Royal Statistical Society: Series B (Methodological), 12, 171–181.

    MathSciNet  MATH  Google Scholar 

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from in complete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Diáz-Garciá, J. A., & Leiva-Sánchez, V. (2005). A new family of life distributions based on the elliptically contoured distributions. Journal of Statistical Planning and Inference, 128, 445–457.

    Article  MathSciNet  Google Scholar 

  • Durbin, J., & Stuart, A. (1951). Inversions and rank correlation coefficients. Journal of the Royal Statistical Society: Series B (Methodological), 13, 303–309.

    MathSciNet  MATH  Google Scholar 

  • Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Embrechts, P., & Puccetti, G. (2006). Bounds for functions of dependent risks. Finance and Stochastics, 10, 341–352.

    Article  MathSciNet  Google Scholar 

  • Fredricks, G. A., & Nelson, R. B. (2007). On the relationship between spearman’s rho and kendall’s tau for pairs of continuous random variables. Journal of Statistical Planning and Inference, 137, 2143–2150.

    Article  MathSciNet  Google Scholar 

  • Gupta, R., & Kirmani, S. N. V. A. (1990). The role of weighted distribution in stochastic modeling. Communications in Statistics-Theory and Methods, 19, 3147–3162.

    Article  MathSciNet  Google Scholar 

  • Nappo, G., & Spizzichino, F. (2009). Kendall distributions and level sets in bivariate exchangeable survival models. Information Sciences, 179, 2878–2890.

    Article  MathSciNet  Google Scholar 

  • Schreyer, M., Paulin, R., & Trutschnig, W. (2017). On the exact region determined by kendall’s \(\tau\) and spearman’s \(\rho\). Journal of the Royal Statistical Society: Series B (Methodological), 79, 613–633.

    Article  MathSciNet  Google Scholar 

  • Volodin, I., & Dzhungurova, O. (2000). On limit distributions emerging in the generalized birnbaum-saunders model. Journal of Mathematical Sciences, 99, 1348–1366.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for valuable comments and suggestions. T. Bae is supported by the Discovery Development Grant program (DDG-2019-06064) of the Natural Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taehan Bae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

For notational convenience, we drop parameters in the argument of functions, and write \(\bar{G}(\cdot ) = 1 - G(\cdot )\) and \(b(t_i) = \alpha _i^{-1}\left( \sqrt{\beta _i/t_i}- \sqrt{t_i/\beta _i}\right) ,\, i = 1, 2\).

By (10), the joint distribution of \((T_1, T_2)\) having \(\text {BVGCR}(\varvec{\alpha },\varvec{\beta },\varvec{p};g)\) is

$$\begin{aligned}&F(t_1, t_2) = p_{11} F_{IS}(t_1)F_{IS}(t_2) + p_{12} F_{IS}(t_1)F_{LB}(t_2)\\&\quad + p_{21} F_{LB}(t_1)F_{IS}(t_2) + p_{22} F_{LB}(t_1)F_{LB}(t_2), \end{aligned}$$

and the marginal density of \(T_i, \, i =1, 2\), is

$$\begin{aligned} f_{T_i}(t_i) = p_i f_{IS}(t_i) + q_i f_{LB}(t_i), \end{aligned}$$

where \(p_1 = p_{11}+p_{12}\), \(p_2 = p_{11}+p_{21}\), \(q_i = 1-p_i\), \(i =1,2\). By expanding the integrand in (12) using these expressions and taking the double integration, we have

$$\begin{aligned}&\int _0^{\infty }\int _0^{\infty }F(t_1, t_2) f_{T_1}(t_1)f_{T_2}(t_2)\,dt_1 dt_2\\&\quad = p_{11}\left\{ p_1 p_2 \text{ E }[F_{S_1}(S_1)]\text{ E }[F_{S_2}(S_2)] + p_1 q_1 \text{ E }[F_{S_1}(S_1)] \zeta _2 + q_1 p_2 \zeta _1 \text{ E }[F_{S_2}(S_2)] + q_1 q_2 \zeta _1 \zeta _2\right\} \\&\qquad + p_{12}\left\{ p_1 p_2 \text{ E }[F_{S_1}(S_1)]\eta _2 + p_1 q_1 \text{ E }[F_{S_1}(S_1)] \text{ E }[F_{V_2}(V_2)] + q_1 p_2 \zeta _1 \eta _2 + q_1 q_2 \zeta _1 \text{ E }[F_{V_2}(V_2)] \right\} \\&\qquad + p_{21}\left\{ p_1 p_2 \eta _1 \text{ E }[F_{S_2}(S_2)] + p_1 q_1 \eta _1 \zeta _2 + q_1 p_2\text{ E }[F_{V_1}(V_1)] \text{ E }[F_{S_2}(S_2)] + q_1 q_2 \text{ E }[F_{V_1}(V_1)]\zeta _2 \right\} \\&\, + p_{22}\left\{ p_1 p_2 \eta _1 \eta _2 + p_1 q_1 \eta _1 \text{ E }[F_{V_2}(V_2)] + q_1 p_2\text{ E }[F_{V_1}(V_1)] \eta _2 + q_1 q_2 \text{ E }[F_{V_1}(V_1)]\text{ E }[F_{V_2}(V_2)] \right\} , \end{aligned}$$

where, for each \(i = 1,2\),

$$\begin{aligned} \text{ E }[F_{S_i}(S_i)]= & {} \int _0^{\infty } F_{IS}(t_i)f_{IS}(t_i) dt_i = \frac{1}{2}\\ \text{ E }[F_{V_i}(V_i)]= & {} \int _0^{\infty } F_{LB}(t_i)f_{LB}(t_i) dt_i = \frac{1}{2}\\ \zeta _i:= & {} \int _0^{\infty } F_{IS}(t_i)f_{LB}(t_i) dt_i \\= & {} \int _0^{\infty } \left[ F_{LB}(t_i) + 2 H(t_i)\right] f_{LB}(t_i) dt_i\\= & {} \text{ E }[F_{V_i}(V_i)] + 2 \int _0^{\infty } H(t_i)f_{LB}(t_i) dt_i = \frac{1}{2} + 2 \int _0^{\infty } H(t_i)f_{LB}(t_i) dt_i\\ \eta _i:= & {} \int _0^{\infty } F_{LB}(t_i)f_{IS}(t_i) dt_i \\= & {} \int _0^{\infty } \left[ F_{IS}(t_i) - 2 H(t_i)\right] f_{IS}(t_i) dt_i\\= & {} \text{ E }[F_{S_i}(S_i)] - 2 \int _0^{\infty } H(t_i)f_{IS}(t_i) dt_i = \frac{1}{2} - 2 \int _0^{\infty } H(t_i)f_{IS}(t_i) dt_i. \end{aligned}$$

That is, the evaluation of the double integral in (12) reduces to that of the following two integrals: \(\int _0^{\infty } H(t)f_{IS}(t) dt\) and \(\int _0^{\infty } H(t)f_{LB}(t) dt\). Due to the expression \(F_{IS}(t) = 1- G(b(t)) + H(t)\) and

$$\begin{aligned}&\int _{-\infty }^{\infty } H(b^{-1}(s)) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds \\&\quad = \int _{-\infty }^{\infty } \left( \int _{s}^{\infty } \frac{z}{\sqrt{z^2+4/\alpha ^2}}\,g(z)dz\right) \, \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds = 0, \end{aligned}$$

and changing the order of integrations, we obtain

$$\begin{aligned} \int _0^{\infty } H(t)f_{IS}(t) dt= & {} \int _0^{\infty } \int _{b(t)}^{\infty }\frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\, f_{IS}(t)dt\\= & {} \int _{-\infty }^{\infty } \left( \int _{b^{-1}(s)}^{\infty } f_{IS}(t)dt\right) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } \left( 1- F_{IS}(b^{-1}(s))\right) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } \left( G(s) - H(b^{-1}(s)) \right) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } G(s)\frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds - \int _{-\infty }^{\infty } H(b^{-1}(s)) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,G(s)g(s)ds = \gamma . \end{aligned}$$

Similarly, due to the expression \(F_{LB}(t) = 1- G(b(t)) - H(t)\), we obtain

$$\begin{aligned} \int _0^{\infty } H(t)f_{LB}(t) dt= & {} \int _0^{\infty } \int _{b(t)}^{\infty }\frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\, f_{LB}(t)dt\\= & {} \int _{-\infty }^{\infty } \left( \int _{b^{-1}(s)}^{\infty } f_{LB}(t)dt\right) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } \left( 1- F_{LB}(b^{-1}(s))\right) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } \left( G(s) + H(b^{-1}(s)) \right) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } G(s)\frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\&\quad + \int _{-\infty }^{\infty } H(b^{-1}(s)) \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,g(s)ds\\= & {} \int _{-\infty }^{\infty } \frac{s}{\sqrt{s^2+4/\alpha ^2}}\,G(s)g(s)ds = \gamma . \end{aligned}$$

Combining these results and some simplifications give the expression (13).

1.2 Proof of Proposition 2

As in the proof of Proposition 1, expanding the integrand in (14) using the joint cdf and pdf of the BVGCR and taking double integrals give

$$\begin{aligned}&\int _0^{\infty }\int _0^{\infty }F(t_1, t_2) f(t_1, t_2)\,dt_1 dt_2\\&\quad = (p_{11})^2 \text{ E }[F_{S_1}(S_1)]\text{ E }[F_{S_2}(S_2)] + p_{11} p_{12} \text{ E }[F_{S_1}(S_1)] \zeta _2 + p_{11} p_{21} \zeta _1 \text{ E }[F_{S_2}(S_2)] \\&\qquad + p_{11} p_{22} \zeta _1 \zeta _2\\&\qquad + p_{12} p_{11} \text{ E }[F_{S_1}(S_1)]\eta _2 + (p_{12})^2 \text{ E }[F_{S_1}(S_1)] \text{ E }[F_{V_2}(V_2)] \\&\qquad + p_{12} p_{21} \zeta _1 \eta _2 + p_{12} p_{22} \zeta _1 \text{ E }[F_{V_2}(V_2)] \\&\qquad + p_{21} p_{11}\eta _1 \text{ E }[F_{S_2}(S_2)] + p_{21} p_{12} \eta _1 \zeta _2 \\&\qquad + (p_{21})^2\text{ E }[F_{V_1}(V_1)] \text{ E }[F_{S_2}(S_2)] + p_{21} p_{22} \text{ E }[F_{V_1}(V_1)]\zeta _2\\&\qquad + p_{22} p_{11} \eta _1 \eta _2 + p_{21} p_{11} \eta _1 \text{ E }[F_{V_2}(V_2)] + p_{22} p_{21}\text{ E }[F_{V_1}(V_1)] \eta _2 \\&\qquad + (p_{22})^2 \text{ E }[F_{V_1}(V_1)]\text{ E }[F_{V_2}(V_2)]. \end{aligned}$$

With the results derived in the proof of Proposition 1, i.e., \(\text{ E }[F_{S_i}(S_i)] = \text{ E }[F_{V_i}(V_i)] = 1/2\), \(\eta _i = 1/2 + 2 \gamma _i\), and \(\zeta _i = 1/2 - 2 \gamma _i\) for each \(i = 1,2\), and after some simplification, the above integral can be expressed as

$$\begin{aligned} \int _0^{\infty }\int _0^{\infty }F(t_1, t_2) f(t_1, t_2)\,dt_1 dt_2 = \frac{1}{4} + 8(p_{11}p_{22} - p_{12}p_{21})\gamma _1\gamma _2, \end{aligned}$$

which gives the desired expression (15) for Kendall’s tau.

1.3 Calculation of the coefficient of upper tail dependence

The following gives the calculation of coefficient of upper tail dependence under the GVGCR distribution. Specifically, the upper tail dependence is measured by the coefficient \(\lambda\) defined as

$$\begin{aligned} \lambda = \lim _{u \rightarrow 1}\text{ P }(T_2> F^{-1}_2(u)\,\big {|}\, T_1> F^{-1}_1(u)) = \lim _{u \rightarrow 1} \frac{\text{ P }(T_1> F^{-1}_1(u), T_2 > F^{-1}_2(u))}{1-u}, \end{aligned}$$
(20)

where \(F_1(\cdot )\) and \(F_2(\cdot )\) are the marginal cdfs of \(T_1\) and \(T_2\), respectively. By the expressions (5) and (6), the numerator in (20) can be written as follows:

$$\begin{aligned}&\text{ P }(T_1> F^{-1}_1(u), T_2 > F^{-1}_2(u)) \\&\quad = G(b_1(F^{-1}_1(u)))G(b_2(F^{-1}_2(u)))\\&\qquad + (p_{12}+p_{22}-p_{11}-p_{21})G(b_1(F^{-1}_1(u)))H_2(F^{-1}_2(u))\\&\qquad + (p_{21}+p_{22}-p_{11}-p_{12})G(b_2(F^{-1}_2(u)))H_1(F^{-1}_1(u))\\&\qquad + (p_{11} +p_{22}-p_{12}-p_{21})H_1(F^{-1}_1(u))H_2(F^{-1}_2(u)), \end{aligned}$$

where \(b_i(t) = \alpha _i^{-1}\left( \sqrt{\beta _i/t}-\sqrt{t/\beta _i}\right)\), \(i = 1, 2\). Direct applications of L’hopital’s rule give

$$\begin{aligned} \lim _{u \rightarrow 1} \frac{H_i(F^{-1}_i(u))}{G(b_i(F^{-1}_i(u)))} = 1,\quad \lim _{u \rightarrow 1} \frac{G(b_i(F^{-1}_i(u)))}{1- u} = \frac{1}{2 q_i}, \end{aligned}$$

where \(q_1 = 1- p_1 = p_{21} + p_{22}\) and \(q_2 = 1- p_2 = p_{12} + p_{22}\). Using these and \(\lim _{u\rightarrow 1}G(b_i(F^{-1}_i(u))) = \lim _{u\rightarrow 1}H(F^{-1}_i(u)) = 0\), we can easily show

$$\begin{aligned} \lambda= & {} \lim _{u \rightarrow 1} \left\{ \frac{G(b_1(F^{-1}_1(u)))}{1-u}\right\} G(b_2(F^{-1}_2(u))) + (p_{12}+p_{22}-p_{11}-p_{21})\\&\lim _{u \rightarrow 1}\left\{ \frac{G(b_1(F^{-1}_1(u)))}{1-u}\right\} H_2(F^{-1}_2(u))\\&+ (p_{21}+p_{22}-p_{11}-p_{12})\lim _{u \rightarrow 1} \left\{ \frac{G(b_2(F^{-1}_2(u)))}{1-u}\right\} H_1(F^{-1}_1(u))\\&+ (p_{21}+p_{22}-p_{11}-p_{12}) \lim _{u \rightarrow 1} \left\{ \frac{H_1(F^{-1}_1(u))}{G(b_1(F^{-1}_1(u)))}\right\} \left\{ \frac{H_2(F^{-1}_2(u))}{G(b_2(F^{-1}_2(u)))}\right\} \\&\left\{ \frac{G(b_1(F^{-1}_1(u)))}{1-u}\right\} G(b_2(F^{-1}_2(u))) = 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, T., Choi, Y.H. A bivariate extension of three-parameter generalized crack distribution for loss severity modelling. J. Korean Stat. Soc. 51, 378–402 (2022). https://doi.org/10.1007/s42952-021-00144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00144-2

Keywords

Navigation