Skip to main content
Log in

Evaluating the Intermediate Temperature Properties of SB Modified Asphalt Binders: Influence of SB Copolymer Structure

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Asphalt pavements are prone to fatigue cracking at intermediate service temperatures (0–30 °C). This study evaluates the impact of styrene–butadiene (SB) copolymer structure (linear, branched, high vinyl, and diblock) on the intermediate temperature rheological properties of the SB modified binders (SB-MBs). Temperature sweep (0–80 °C) and frequency sweep at 15 °C (100–0.1 rad/s) were performed in the linear viscoelastic region (LVE). Asphalt mixes were prepared using SB-MBs with different SB copolymers, and their fatigue performance at 15 °C was determined. The result illustrates that the structure of the SB copolymer significantly affects the elevated temperature (145–170 °C) and upper service temperature (60 °C) rheological properties of the SB-MBs. Radial branches, triblock architecture, and higher molecular weight in branched SB copolymer result in the highest viscosity and performance properties at elevated and upper service temperatures. In contrast, the influence of SB structure on the rheological properties of modified binders diminishes below 25 °C due to the exponential increase in stiffness (|G*|) of the base binder. The rheological imprint of the SB copolymer structure on the rheological properties of SB-MBs in the LVE region becomes negligible owing to lower SB copolymer content (≤ 7 wt%) compared to the highly stiff base binder (≥ 93 wt%). Notably, a significant difference in the fatigue performance of the asphalt mixes was observed, with the branched SB copolymer resulting in the best-performing asphalt mix. The results demonstrate the inadequacy of LVE region rheological measurements in forecasting the fatigue performance of asphalt mixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data is presented in Results and discussion section of this manuscript.

References

  1. Cardone, F., Ferrotti, G., Frigio, F., & Canestrari, F. (2014). Influence of polymer modification on asphalt binder dynamic and steady flow viscosities. Construction and Building Materials, 71, 435–443. https://doi.org/10.1016/j.conbuildmat.2014.08.043

    Article  Google Scholar 

  2. Kumar, P., Chandra, S., & Bose, S. (2006). Strength characteristics of polymer modified mixes. International Journal of Pavement Engineering, 7(1), 63–71. https://doi.org/10.1080/10298430500495147

    Article  Google Scholar 

  3. Saboo, N., & Kumar, P. (2016). Performance characterization of polymer modified asphalt binders and mixes (G. Chehab, Ed.). Advances in Civil Engineering, 2016, 5938270. https://doi.org/10.1155/2016/5938270

    Article  Google Scholar 

  4. Kim, B., Roque, R., & Birgisson, B. (2003). Effect of styrene butadiene styrene modifier on cracking resistance of asphalt mixture. Transportation Research Record No, 1829, 8–15. https://doi.org/10.3141/1829-02

    Article  Google Scholar 

  5. Stangl, K., Jäger, A., & Lackner, R. (2007). The effect of styrene-butadiene-styrene modification on the characteristics and performance of bitumen. Monatshefte fur Chemie, 138(4), 301–307. https://doi.org/10.1007/s00706-007-0614-5

    Article  Google Scholar 

  6. Stimilli, A., Ferrotti, G., Conti, C., Tosi, G., & Canestrari, F. (2014). Chemical and rheological analysis of modified bitumens blended with “artificial reclaimed bitumen.” Construction and Building Materials, 63, 1–10. https://doi.org/10.1016/j.conbuildmat.2014.03.047

    Article  Google Scholar 

  7. Laukkanen, O. V., Soenen, H., Winter, H. H., & Seppälä, J. (2018). Low-temperature rheological and morphological characterization of SBS modified bitumen. Construction and Building Materials, 179, 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160

    Article  Google Scholar 

  8. Vorontsov, S. V., Maidanova, N. V., Syroezhko, A. M., & Ivanov, S. N. (2012). Choice of polymer-bitumen binders for cast asphalt concrete mixes. Russian Journal of Applied Chemistry, 85(2), 309–316. https://doi.org/10.1134/s1070427212020267

    Article  Google Scholar 

  9. Yildirim, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials, 21(1), 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007

    Article  Google Scholar 

  10. Chen, J.-S., Liao, M.-C., & Shiah, M.-S. (2002). Asphalt modified by styrene–butadiene–styrene triblock copolymer: morphology and model. Journal of Materials in Civil Engineering, 14(3), 224–229. https://doi.org/10.1061/(asce)0899-1561(2002)14:3(224)

    Article  Google Scholar 

  11. Urquhart, R., Woodall, E., Malone, S., & Lourensz, S. (2017). Effects of hot storage on polymer modified binder properties and field performance. In: E&E Congress 2016. 6th Eurasphalt & Eurobitume Congress, 1–3 June 2016 Prague, Czech Republic. https://doi.org/10.14311/ee.2016.064

  12. Vamegh, M., Ameri, M., & Chavoshian Naeni, S. F. (2019). Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Construction and Building Materials, 209, 202–214. https://doi.org/10.1016/j.conbuildmat.2019.03.111

    Article  Google Scholar 

  13. Huang, M., & Huang, W. (2016). Laboratory investigation on fatigue performance of modified asphalt concretes considering healing. Construction and Building Materials, 113, 68–76. https://doi.org/10.1016/j.conbuildmat.2016.02.083

    Article  Google Scholar 

  14. Kumar, Y., Singh, S. K., Oberoi, D., Kumar, P., Mohanty, P., & Ravindranath, S. S. (2020). Effect of molecular structure and concentration of styrene-butadiene polymer on upper service temperature rheological properties of modified binders. Construction and Building Materials, 249, 118790. https://doi.org/10.1016/j.conbuildmat.2020.118790

    Article  Google Scholar 

  15. Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloid and Interface Science, 11(4), 230–245. https://doi.org/10.1016/j.cocis.2006.09.001

    Article  Google Scholar 

  16. Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897–1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013

    Article  Google Scholar 

  17. Behnood, A., & Modiri Gharehveran, M. (2019). Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112(2018), 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049

    Article  Google Scholar 

  18. Polacco, G., Stastna, J., Vlachovicova, Z., Biondi, D., & Zanzotto, L. (2004). Temporary networks in polymer-modified asphalts. Polymer Engineering and Science, 44(12), 2185–2193. https://doi.org/10.1002/pen.20246

    Article  Google Scholar 

  19. Zhang, Q., Wang, T., Fan, W., Ying, Y., & Wu, Y. (2014). Evaluation of the properties of bitumen modified by SBS copolymers with different styrene-butadiene structure. Journal of Applied Polymer Science, 131(12), 1–7. https://doi.org/10.1002/app.40398

    Article  Google Scholar 

  20. Chen, J. S., Wang, T. J., & Lee, C. T. (2018). Evaluation of a highly-modified asphalt binder for field performance. Construction and Building Materials, 171, 539–545. https://doi.org/10.1016/j.conbuildmat.2018.03.188

    Article  Google Scholar 

  21. Navarro, F. J., Partal, P., Martínez-Boza, F., & Gallegos, C. (2005). Effect of composition and processing on the linear viscoelasticity of synthetic binders. European Polymer Journal, 41(6), 1429–1438. https://doi.org/10.1016/j.eurpolymj.2004.12.006

    Article  Google Scholar 

  22. Bulatović, V. O., Rek, V., & Marković, K. J. (2014). Effect of polymer modifiers on the properties of bitumen. Journal of Elastomers and Plastics, 46(5), 448–469. https://doi.org/10.1177/0095244312469964

    Article  Google Scholar 

  23. Fernandes, M. R. S., Forte, M. M. C., & Leite, L. F. M. (2008). Rheological evaluation of polymer-modified asphalt binders. Materials Research, 11(3), 381–386. https://doi.org/10.1590/S1516-14392008000300024

    Article  Google Scholar 

  24. Lv, Q., Huang, W., Sadek, H., Xiao, F., & Yan, C. (2019). Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg wheel-tracking device test and multiple stress creep recovery test. Construction and Building Materials, 206, 62–70. https://doi.org/10.1016/j.conbuildmat.2019.02.015

    Article  Google Scholar 

  25. Santagata, E., Baglieri, O., Dalmazzo, D., & Tsantilis, L. (2013). Evaluation of the anti-rutting potential of polymer-modified binders by means of creep-recovery shear tests. Materials and Structures/Materiaux et Constructions, 46(10), 1673–1682. https://doi.org/10.1617/s11527-012-0006-0

    Article  Google Scholar 

  26. Fu, H., Xie, L., Dou, D., Li, L., Yu, M., & Yao, S. (2007). Storage stability and compatibility of asphalt binder modified by SBS graft copolymer. Construction and Building Materials, 21(7), 1528–1533. https://doi.org/10.1016/j.conbuildmat.2006.03.008

    Article  Google Scholar 

  27. Kumar, P., Mehndiratta, H. C., & Singh, K. L. (2010). Comparative study of rheological behavior of modified binders for high-temperature areas. Journal of Materials in Civil Engineering, 22(10), 978–984. https://doi.org/10.1061/(asce)mt.1943-5533.0000099

    Article  Google Scholar 

  28. Singh, S. K., Kumar, Y., & Ravindranath, S. S. (2018). Thermal degradation of SBS in bitumen during storage: Influence of temperature, SBS concentration, polymer type and base bitumen. Polymer Degradation and Stability, 147(October 2017), 64–75. https://doi.org/10.1016/j.polymdegradstab.2017.11.008

    Article  Google Scholar 

  29. Bulatović, V. O., Rek, V., & Marković, K. J. (2013). Influence of polymer types on bitumen engineering properties. Materials Research Innovations, 17(3), 189–194. https://doi.org/10.1179/1433075x12y.0000000059

    Article  Google Scholar 

  30. Hossain, R., & Wasiuddin, N. M. (2019). Evaluation of degradation of SBS modified asphalt binder because of RTFO, PAV, and UV aging using a novel extensional deformation test. Transportation Research Record, 2673(6), 447–457. https://doi.org/10.1177/0361198119847471

    Article  Google Scholar 

  31. Lin, P., Huang, W., Li, Y., Tang, N., & Xiao, F. (2017). Investigation of influence factors on low temperature properties of SBS modified asphalt. Construction and Building Materials, 154, 609–622. https://doi.org/10.1016/j.conbuildmat.2017.06.118

    Article  Google Scholar 

  32. Lu, X. (2014). Low-temperature properties of styrene–butadiene–styrene polymer modified bitumens polymer modified bitumens. Construction and Building Materials., 12, 405–414. https://doi.org/10.1016/S0950-0618(98)00032-4

    Article  Google Scholar 

  33. Oliviero Rossi, C., Spadafora, A., Teltayev, B., Izmailova, G., Amerbayev, Y., Bortolotti, V., Spadafora, A., Oliviero Rossi, C., Amerbayev, Y., Spadafora, A., Teltayev, B., Izmailova, G., Amerbayev, Y., & Bortolotti, V. (2015). Polymer modified bitumen: Rheological properties and structural characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 390–397. https://doi.org/10.1016/j.colsurfa.2015.02.048

    Article  Google Scholar 

  34. Abdulmawjoud, A. A. (2023). Evaluation of fatigue characteristics of reclaimed asphalt pavement mixtures through dissipated energy. International Journal of Pavement Research and Technology, 16(1), 237–245. https://doi.org/10.1007/s42947-021-00128-9

    Article  Google Scholar 

  35. Carrera, V., Partal, P., García-Morales, M., Gallegos, C., & Páez, A. (2009). Influence of bitumen colloidal nature on the design of isocyanate-based bituminous products with enhanced rheological properties. Industrial and Engineering Chemistry Research, 48(18), 8464–8470. https://doi.org/10.1021/ie9004404

    Article  Google Scholar 

  36. Filippelli, L., Gentile, L., Rossi, C. O., Ranieri, G. A., & Antunes, F. E. (2012). Structural change of bitumen in the recycling process by using rheology and NMR. Industrial and Engineering Chemistry Research, 51(50), 16346–16353. https://doi.org/10.1021/ie301899v

    Article  Google Scholar 

  37. Lu, X., Uhlback, P., & Soenen, H. (2017). Investigation of bitumen low temperature properties using a dynamic shear rheometer with 4 mm parallel plates. International Journal of Pavement Research and Technology, 10(1), 15–22. https://doi.org/10.1016/j.ijprt.2016.08.010

    Article  Google Scholar 

  38. Safaei, F., & Castorena, C. (2017). Material nonlinearity in asphalt binder fatigue testing and analysis. Materials and Design, 133, 376–389. https://doi.org/10.1016/j.matdes.2017.08.010

    Article  Google Scholar 

  39. Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Materials Science, 82, 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7

    Article  Google Scholar 

  40. Ameri, M., Nowbakht, S., Molayem, M., & Mirabimoghaddam, M. H. (2016). A study on fatigue modeling of hot mix asphalt mixtures based on the viscoelastic continuum damage properties of asphalt binder. Construction and Building Materials, 106, 243–252. https://doi.org/10.1016/j.conbuildmat.2015.12.066

    Article  Google Scholar 

  41. Razmi, A., & Mirsayar, M. M. (2018). Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures. International Journal of Pavement Research and Technology, 11(3), 265–273. https://doi.org/10.1016/j.ijprt.2017.10.003

    Article  Google Scholar 

  42. Liu, S., Cao, W., Shang, S., Qi, H., & Fang, J. (2010). Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders. Construction and Building Materials, 24(4), 471–478. https://doi.org/10.1016/j.conbuildmat.2009.10.015

    Article  Google Scholar 

  43. Asphalt Institute (2015). MS-2 Asphalt Mix Design Methods, 7th edn (ISBN: 9781934154700)

  44. Wang, K., Yuan, Y., Han, S., & Yang, Y. (2019). Application of FTIR spectroscopy with solvent-cast film and PLS regression for the quantification of SBS content in modified asphalt. International Journal of Pavement Engineering, 20(11), 1336–1341. https://doi.org/10.1080/10298436.2017.1413242

    Article  Google Scholar 

  45. Xu, J., Zhang, A., Zhou, T., Cao, X., & Xie, Z. (2007). A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer (SBS). Polymer Degradation and Stability, 92(9), 1682–1691. https://doi.org/10.1016/j.polymdegradstab.2007.06.008

    Article  Google Scholar 

  46. Canto, L. B., Mantovani, G. L., Deazevedo, E. R., Bonagamba, T. J., Hage, E., & Pessan, L. A. (2006). Molecular characterization of styrene–butadiene–styrene block copolymers (SBS) by GPC, NMR, and FTIR. Polymer Bulletin, 57(4), 513–524. https://doi.org/10.1007/s00289-006-0577-4

    Article  Google Scholar 

  47. Sugimoto, M., Suzuki, Y., Hyun, K., Ahn, K. H., Ushioda, T., Nishioka, A., Taniguchi, T., & Koyama, K. (2006). Melt rheology of long-chain-branched polypropylenes. Rheologica Acta, 46(1), 33–44. https://doi.org/10.1007/s00397-005-0065-z

    Article  Google Scholar 

  48. Chang, C. S., & Tsiang, R. C. C. (2001). Molecular weight measurements of star-shaped polystyrene-block-polybutadiene copolymers using gel permeation chromatography. International Journal of Polymer Analysis and Characterization, 6(6), 581–598. https://doi.org/10.1080/10236660108030871

    Article  Google Scholar 

  49. Choudhary, J., Kumar, B., & Gupta, A. (2020). Effect of filler on the bitumen-aggregate adhesion in asphalt mix. International Journal of Pavement Engineering, 21(12), 1482–1490. https://doi.org/10.1080/10298436.2018.1549325

    Article  Google Scholar 

  50. Liang, M., Xin, X., Fan, W., Wang, H., & Sun, W. (2019). Phase field simulation and microscopic observation of phase separation and thermal stability of polymer modified asphalt. Construction and Building Materials, 204, 132–143. https://doi.org/10.1016/j.conbuildmat.2019.01.180

    Article  Google Scholar 

  51. Schaur, A., Unterberger, S., & Lackner, R. (2017). Impact of molecular structure of SBS on thermomechanical properties of polymer modified bitumen. European Polymer Journal, 96, 256–265. https://doi.org/10.1016/j.eurpolymj.2017.09.017

    Article  Google Scholar 

  52. Doerpinghaus, P. J., & Baird, D. G. (2003). Separating the effects of sparse long-chain branching on rheology from those due to molecular weight in polyethylenes. Journal of Rheology, 47(3), 717–736. https://doi.org/10.1122/1.1567751

    Article  Google Scholar 

  53. Liu, P., Liu, W., Wang, W. J., Li, B. G., & Zhu, S. (2017). A comprehensive review on controlled synthesis of long-chain branched polyolefins: Part 3, characterization of long-chain branched polymers. Macromolecular Reaction Engineering. https://doi.org/10.1002/mren.201600012

    Article  Google Scholar 

  54. Wang, W. J., Kharchenko, S., Migler, K., & Zhu, S. (2004). Triple-detector GPC characterization and processing behavior of long-chain-branched polyethylene prepared by solution polymerization with constrained geometry catalyst. Polymer, 45(19), 6495–6505. https://doi.org/10.1016/j.polymer.2004.07.035

    Article  Google Scholar 

  55. Dong, F., Zhao, W., Zhang, Y., Wei, J., Fan, W., Yu, Y., & Wang, Z. (2014). Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 1–7. https://doi.org/10.1016/j.conbuildmat.2014.03.018

    Article  Google Scholar 

  56. Han, S., Niu, D. Y., Liu, Y. M., Chen, D., & Liu, D. W. (2014). Analysis on the impact of the type and content of sbs on the performance of the modified asphalt mixture. Advanced Materials Research, 919–921, 1079–1084. https://doi.org/10.4028/www.scientific.net/amr.919-921.1079

    Article  Google Scholar 

  57. Liang, M., Liang, P., Fan, W., Qian, C., Xin, X., Shi, J., & Nan, G. (2015). Thermo-rheological behavior and compatibility of modified asphalt with various styrene-butadiene structures in SBS copolymers. Materials and Design, 88, 177–185. https://doi.org/10.1016/j.matdes.2015.09.002

    Article  Google Scholar 

  58. Das, A. K., & Panda, M. (2017). Investigation on rheological performance of sulphur modified bitumen (SMB) binders. Construction and Building Materials, 149, 724–732. https://doi.org/10.1016/j.conbuildmat.2017.05.198

    Article  Google Scholar 

  59. Hamedi, G. H., Saedi, D., & Ghahremani, H. (2020). Effect of short-term aging on low-temperature cracking in asphalt mixtures using mechanical and thermodynamic methods. Journal of Materials in Civil Engineering, 32(10), 04020288. https://doi.org/10.1061/(asce)mt.1943-5533.0003388

    Article  Google Scholar 

  60. Lesueur, D., Elwardany, M. D., Planche, J.-P., Christensen, D., & King, G. N. (2021). Impact of the asphalt binder rheological behavior on the value of the ΔTc parameter. Construction and Building Materials, 293, 123464. https://doi.org/10.1016/j.conbuildmat.2021.123464

    Article  Google Scholar 

  61. Mouillet, V., Lamontagne, J., Durrieu, F., Planche, J. P., & Lapalu, L. (2008). Infrared microscopy investigation of oxidation and phase evolution in bitumen modified with polymers. Fuel, 87(7), 1270–1280. https://doi.org/10.1016/j.fuel.2007.06.029

    Article  Google Scholar 

  62. Bai, M. (2017). Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Construction and Building Materials, 150, 766–773. https://doi.org/10.1016/j.conbuildmat.2017.05.206

    Article  Google Scholar 

  63. Das, P. K., Tasdemir, Y., & Birgisson, B. (2012). Low temperature cracking performance of WMA with the use of the Superpave indirect tensile test. Construction and Building Materials, 30, 643–649. https://doi.org/10.1016/j.conbuildmat.2011.12.013

    Article  Google Scholar 

  64. Redelius, P., & Soenen, H. (2015). Relation between bitumen chemistry and performance. Fuel, 140, 34–43. https://doi.org/10.1016/j.fuel.2014.09.044

    Article  Google Scholar 

  65. Elwardany, M. D., Planche, J.-P., & King, G. (2022). Proposed changes to asphalt binder specifications to address binder quality-related thermally induced surface damage. Transportation Research Record, 2676(5), 176–191. https://doi.org/10.1177/03611981211065428

    Article  Google Scholar 

  66. Wang, S., & Huang, W. (2021). Investigation of aging behavior of terminal blend rubberized asphalt with SBS polymer. Construction and Building Materials, 267, 120870. https://doi.org/10.1016/j.conbuildmat.2020.120870

    Article  Google Scholar 

  67. Yan, C., Huang, W., Ma, J., Xu, J., Lv, Q., & Lin, P. (2020). Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR. Construction and Building Materials, 233, 117708. https://doi.org/10.1016/j.conbuildmat.2019.117708

    Article  Google Scholar 

  68. Cuciniello, G., Leandri, P., Filippi, S., Lo Presti, D., Losa, M., & Airey, G. (2018). Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens. Materials and Structures, 51(5), 136. https://doi.org/10.1617/s11527-018-1263-3

    Article  Google Scholar 

  69. Zhang, J., Huang, W., Hao, G., Yan, C., Lv, Q., & Cai, Q. (2021). Evaluation of open-grade friction course (OGFC) mixtures with high content SBS polymer modified asphalt. Construction and Building Materials, 270, 121374. https://doi.org/10.1016/j.conbuildmat.2020.121374

    Article  Google Scholar 

  70. Kaya, D., Topal, A., & Mcnally, T. (2019). Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen. Construction and Building Materials, 221, 345–350. https://doi.org/10.1016/j.conbuildmat.2019.06.081

    Article  Google Scholar 

  71. Somé, S. C., Barthélémy, J.-F., Mouillet, V., Hammoum, F., & Liu, G. (2022). Effect of thermo-oxidative ageing on the rheological properties of bituminous binders and mixes: Experimental study and multi-scale modeling. Construction and Building Materials, 344, 128260. https://doi.org/10.1016/j.conbuildmat.2022.128260

    Article  Google Scholar 

  72. Zhang, H., Yu, J., & Kuang, D. (2012). Effect of expanded vermiculite on aging properties of bitumen. Construction and Building Materials, 26, 244–248. https://doi.org/10.1016/j.conbuildmat.2011.06.017

    Article  Google Scholar 

  73. Bhardwaj, R., & Mohanty, A. K. (2007). Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules, 8(8), 2476–2484. https://doi.org/10.1021/bm070367x

    Article  Google Scholar 

  74. Jamarani, R., Erythropel, H. C., Burkat, D., Nicell, J. A., Leask, R. L., & Maric, M. (2017). Rheology of green plasticizer/poly(vinyl chloride) blends via time-temperature superposition. Processes, 5(3), 43. https://doi.org/10.3390/pr5030043

    Article  Google Scholar 

  75. Aflaki, S., & Tabatabaee, N. (2009). Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran. Construction and Building Materials, 23(6), 2141–2150. https://doi.org/10.1016/j.conbuildmat.2008.12.014

    Article  Google Scholar 

  76. Lee, M., Chiu, C., Kan, Y., & Chen, K. (2004). Comparison of results of SHRP and conventional binder tests on paving asphalts (pp. 245–256).

  77. Zhang, Q., Zhao, J., & Guo, S. (2023). Asphalt rheological properties transformation from frequency domain to temperature domain based on WLF equation. International Journal of Pavement Research and Technology, 16(1), 167–175. https://doi.org/10.1007/s42947-021-00123-0

    Article  Google Scholar 

  78. ASTM D113-99 (1999). Standard test metod for ductility of bituminous materials (pp. 25–27). American Society for Testing and Materials. https://doi.org/10.1520/D0005-13.2.

  79. Statements, B. (2008). Standard test method for elastic recovery of bituminous materials by ductilometer 1. In Annual book of ASTM standards (Vol. i, pp. 1–5). https://doi.org/10.1520/D6084-06.2.

  80. Johnson, C. M., & Bahia, H. U. (2010). Evaluation of an accelerated procedure for fatigue characterization of asphalt binders.

  81. Pandey, A., Singh, S. K., Islam, S. S., Ransingchung, G. D., Raju, S., & Ravindranath, S. S. (2023). Rheological analysis of performance grade rutting and fatigue cracking criteria in asphalt binders. International Journal of Pavement Research and Technology, 16(1), 66–81. https://doi.org/10.1007/s42947-021-00113-2

    Article  Google Scholar 

  82. Zhou, F., Mogawer, W., Li, H., Andriescu, A., & Copeland, A. (2013). Evaluation of fatigue tests for characterizing asphalt binders. Journal of Materials in Civil Engineering, 25(5), 610–617. https://doi.org/10.1061/(asce)mt.1943-5533.0000625

    Article  Google Scholar 

  83. Gabriele, D., & Calabria, U. (2012). Low temperature rheology of polyphosphoric acid (PPA) added bitumen. Construction and Building Materials, 36, 592–596. https://doi.org/10.1016/j.conbuildmat.2012.06.011

    Article  Google Scholar 

  84. Shen, S., Airey, G. D., Carpenter, S. H., & Huang, H. (2006). A dissipated energy approach to fatigue evaluation. Road Materials and Pavement Design, 7(1), 47–69. https://doi.org/10.1080/14680629.2006.9690026

    Article  Google Scholar 

  85. Subhy, A. (2017). Advanced analytical techniques in fatigue and rutting related characterisations of modified bitumen : Literature review. Construction and Building Materials, 156, 28–45. https://doi.org/10.1016/j.conbuildmat.2017.08.147

    Article  Google Scholar 

  86. Kök, B. V., Yilmaz, M., & Geçkil, A. (2013). Evaluation of low-temperature and elastic properties of crumb rubber- and SBS-modified bitumen and mixtures. Journal of Materials in Civil Engineering, 25(2), 257–265. https://doi.org/10.1061/(asce)mt.1943-5533.0000590

    Article  Google Scholar 

  87. Saboo, N., Kumar, R., Kumar, P., & Gupta, A. (2018). Ranking the rheological response of SBS- and EVA-modified bitumen using MSCR and LAS tests. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002367

    Article  Google Scholar 

  88. Xia, T., Zhou, L., Xu, J., Qin, Y., Chen, W., & Dai, J. (2018). Rheology and thermal stability of polymer modified bitumen with coexistence of amorphous phase and crystalline phase. Construction and Building Materials, 178, 272–279. https://doi.org/10.1016/j.conbuildmat.2018.05.073

    Article  Google Scholar 

  89. Glaoui, B., Merbouh, M., & Van De Ven, M. V. (2013). How thermal fatigue cycles change the rheological behavior of polymer modified bitumen? Energy Procedia, 36, 844–851. https://doi.org/10.1016/j.egypro.2013.07.097

    Article  Google Scholar 

  90. Zhou, Z., Gu, X., Dong, Q., Ni, F., & Jiang, Y. (2020). Low- and intermediate-temperature behaviour of polymer-modified asphalt binders, mastics, fine aggregate matrices, and mixtures with reclaimed asphalt pavement material. Road Materials and Pavement Design, 21(7), 1872–1901. https://doi.org/10.1080/14680629.2019.1574233

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge department of polymer and process engineering for providing testing instrument facility. The authors thankful to ‘The Department of Biotechnology’ for providing fluorescent microscopy experiments facility.

Funding

This work is supported by a financial grant from SERB, India (ECR/2016/001427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sham S. Ravindranath.

Ethics declarations

Conflict of Interest

We confirm that the manuscript, or its contents in this or other forms, has not been published previously by any of the authors and/or is not under consideration for publication in other journal at the time of submission. This is our original work and proper references have been cited as per requirement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Kumar, P. & Ravindranath, S.S. Evaluating the Intermediate Temperature Properties of SB Modified Asphalt Binders: Influence of SB Copolymer Structure. Int. J. Pavement Res. Technol. (2023). https://doi.org/10.1007/s42947-023-00283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-023-00283-1

Keywords

Navigation