Skip to main content
Log in

Sustainable Use of Red Mud and Reclaimed Asphalt Pavement Wastes in Roller Compacted Concrete

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Reduce, reuse and recycle are treated as the thumb rule for achieving sustainability, and this formula rightly applies to construction materials as they are depleting at an incredible pace. Reclaimed asphalt pavement (RAP) is a sustainable alternative for construction aggregates. Several researchers have identified RAP as inferior material over natural coarse aggregates and proposed incorporating materials like superplasticizers, admixtures, fibers, and pozzolanic materials to compensate for the decrease in mechanical properties. Thus, the present study aims to evaluate the mechanical and durability characteristics of RAP-based roller-compacted concrete with red mud as part addition to cement. The present study considers a constant replacement percentage of 50% by weight of natural aggregates with RAP to evaluate mechanical and durability properties. Upon comparing the fresh properties of RAP-based roller-compacted concrete with red mud over roller-compacted concrete with only natural aggregates, a 3–15% increase in optimum moisture content is observed. Further, the mechanical properties like compressive, flexural, and tensile strengths, which showed a downtrend due to RAP inclusion, have significantly improved by incorporating red mud. However, a 15% red mud by cement weight is observed to be an optimum dosage based on the mechanical properties. Red mud-inclusive mixes outperformed RAP and control mixes in terms of durability characteristics such as water absorption, abrasion loss, and resistance to the aggressive environment. Further, incorporating 15% red mud in RAP-based roller-compacted concrete liberates a lower calcium silica ratio, which ascertains the dense microstructure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Singh, S., Monu, K., & Ransinchung, G. D. R. N. (2019). Laboratory investigation of RAP for various layers of flexible and concrete pavement. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2019.1567920

    Article  Google Scholar 

  2. Settari, C., Debieb, F., Hadj, E., & Boukendakdji, O. (2015). Assessing the effects of recycled asphalt pavement materials on the performance of roller compacted concrete. Construction and Building Materials, 101, 617–621. https://doi.org/10.1016/j.conbuildmat.2015.10.039

    Article  Google Scholar 

  3. Devulapalli, L., Kothandaraman, S. K., & Sarang, G. (2019). A review on the mechanisms involved in reclaimed asphalt pavement. International Journal of Pavement Research Technology, 12(2), 185–196. https://doi.org/10.1007/s42947-019-0024-1

    Article  Google Scholar 

  4. Singh, S., Ransinchung, G. D. R. N., & Monu, K. (2019). Sustainable lean concrete mixes containing wastes originating from roads and industries. Construction and Building Materials, 209, 619–630. https://doi.org/10.1016/j.conbuildmat.2019.03.122

    Article  Google Scholar 

  5. Chakravarthi, S., Boyina, A., Singh, A. K., & Shankar, S. (2019). Evaluation of cement treated reclaimed asphalt pavement and recycled concrete pavement bases. International Journal of Pavement Research Technology, 12(6), 581–588. https://doi.org/10.1007/s42947-019-0069-1

    Article  Google Scholar 

  6. Ben Saïd, S. E. E., El Euch Khay, S., Achour, T., & Loulizi, A. (2017). Modelling of the adhesion between reclaimed asphalt pavement aggregates and hydrated cement paste. Construction and Building Materials, 152, 839–846. https://doi.org/10.1016/j.conbuildmat.2017.07.078

    Article  Google Scholar 

  7. Mukhopadhyay, A., & Shi, X. (2019). Microstructural characterization of portland cement concrete containing reclaimed asphalt pavement aggregate using conventional and advanced petrographic techniques. In: D. Cong, D. Broton (Eds.) Advances in cement analysis and concrete petrography. ASTM International, pp. 187–206

  8. Singh, S., Ransinchung, G. D., & Monu, K. (2019). Sustainable lean concrete mixes containing wastes originating from roads and industries. Construction and Building Materials, 209, 619–630. https://doi.org/10.1016/j.conbuildmat.2019.03.122

    Article  Google Scholar 

  9. Debbarma, S., Ransinchung, G., & Singh, S. (2020). Improving the properties of RAP-RCCP mixes by incorporating supplementary cementitious materials as part addition of Portland cement. Journal of Materials in Civil Engineering, 32(8), 04020229. https://doi.org/10.1061/(asce)mt.1943-5533.0003283

    Article  CAS  Google Scholar 

  10. Modarres, A., & Hosseini, Z. (2014). Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material. Journal of Materials, 64, 227–236. https://doi.org/10.1016/j.matdes.2014.07.072

    Article  Google Scholar 

  11. Hesami, S., Modarres, A., Soltaninejad, M., & Madani, H. (2016). Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement. Construction and Building Materials, 111, 625–636. https://doi.org/10.1016/j.conbuildmat.2016.02.116

    Article  CAS  Google Scholar 

  12. Ashteyat, A. M., Al, Y. S., Ala, R., Obaidat, T., Kirgiz, M., & Jaber, A. (2022). Roller compacted concrete with oil shale ash as a replacement of cement : mechanical and durability behavior. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-022-00225-3

    Article  Google Scholar 

  13. Rao, S. K., Sravana, P., & Rao, T. C. (2016). Investigating the effect of M-sand on abrasion resistance of fly ash roller compacted concrete (FRCC). Construction and Building Materials, 118, 352–363. https://doi.org/10.1016/j.conbuildmat.2016.05.017

    Article  Google Scholar 

  14. Bastani, M., & Behfarnia, K. (2020). Application of alkali-activated slag in roller compacted concrete. International Journal of Pavement Research and Technology, 13(3), 324–333. https://doi.org/10.1007/s42947-020-0088-y

    Article  Google Scholar 

  15. Venkatesh, C., Ruben, N., & Chand, M. S. R. (2020). Red mud as an additive in concrete: Comprehensive characterization. Journal of the Korean Ceramic Society, 57(3), 281–289. https://doi.org/10.1007/s43207-020-00030-3

    Article  CAS  Google Scholar 

  16. Liu, R. X., & Poon, C. S. (2016). Utilization of red mud derived from bauxite in self-compacting concrete. Journal of Cleaner Production, 112, 384–391. https://doi.org/10.1016/j.jclepro.2015.09.049

    Article  CAS  Google Scholar 

  17. Liu, W., Yang, J., & Xiao, B. (2009). Review on treatment and utilization of bauxite residues in China. International Journal of Mineral Processing, 93(3–4), 220–231. https://doi.org/10.1016/j.minpro.2009.08.005

    Article  CAS  Google Scholar 

  18. Krivenko, P., et al. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151, 819–826. https://doi.org/10.1016/j.conbuildmat.2017.06.031

    Article  CAS  Google Scholar 

  19. Ghalehnovi, M., Roshan, N., Hakak, E., Shamsabadi, E. A., & de Brito, J. (2019). Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. Journal of Cleaner Production, 240, 118213. https://doi.org/10.1016/j.jclepro.2019.118213

    Article  CAS  Google Scholar 

  20. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Comparison of mechanical and durability properties of treated and untreated red mud concrete. Materials Today: Proceedings, 27, 284–287. https://doi.org/10.1016/j.matpr.2019.11.026

    Article  CAS  Google Scholar 

  21. Chand, M. S. R., Kumar, P. R., Giri, P. S. N. R., & Kumar, G. R. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Advances in Cement Research, 30(10), 451–468. https://doi.org/10.1680/jadcr.17.00154

    Article  Google Scholar 

  22. L. M. D, S. C, A. R, & S. A. (2015). Investigations on optimum possibility of replacing cement partially by redmud in concrete. Scientific Research and Essays, 10(4), 137–143. https://doi.org/10.5897/sre2015.6166

  23. Anirudh, M., Rekha, K. S., Venkatesh, C., & Nerella, R. (2020). Characterization of red mud based cement mortar; mechanical and microstructure studies. Materials Today: Proceedings, 43(xxxx), 1587–1591. https://doi.org/10.1016/j.matpr.2020.09.504

    Article  Google Scholar 

  24. Singh, S., Ransinchung, G. D. R. N., & Kumar, P. (2019). Feasibility study of RAP aggregates in cement concrete pavements. Road Materials Pavement Design, 20(1), 151–170. https://doi.org/10.1080/14680629.2017.1380071

    Article  CAS  Google Scholar 

  25. Harrington, D., Abdo, F., Adaska, W., & Hazaree, C. (2010). Guide for roller-compacted concrete pavements. Inst. Transp. Iowa State Univerisity, no. August, p. 104 [Online]. http://trid.trb.org/view.aspx?id=1082276

  26. Fakhri, M., & Saberik, F. (2016). The effect of waste rubber particles and silica fume on the mechanical properties of roller compacted concrete pavement. Journal of Cleaner Production, 129, 521–530. https://doi.org/10.1016/j.jclepro.2016.04.017

    Article  CAS  Google Scholar 

  27. Debbarma, S., & Ransinchung, G. D. R. N. (2020). Achieving sustainability in roller compacted concrete pavement mixes using reclaimed asphalt pavement aggregates e state of the art review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.125078

    Article  Google Scholar 

  28. American Concrete Institute. (2011). 207.5R-11. Roller-compacted mass concrete, vol. 207.5R

  29. ACI 325. (2001). Report on roller compacted concrete pavements. https://doi.org/10.3151/coj1975.27.5_22

  30. Portland Cement Association & Cement Association of Canada. (2006). Production of Roller-Compacted Concrete, vol. 4, no. 4

  31. IRC. (2005). Guidelines for construction of roller compacted concrete pavements, 68. Indian Roads Congress IRC SP-, New Delhi, India

  32. PCA. (2006). Production of roller-compacted concrete. Portland Cement Association

  33. ACI 211. (2002). Guide for selecting proportions for no-slump concrete reported by ACI committee 211. American Concrete Institution, vol. 02, no. reapproved, pp. 1–26

  34. ASTM International. (2000). ASTM, D1557-12, standard test methods for laboratory compaction characteristics of soil using modified effort. ASTM International, West Conshohocken, PA, ASTM Standard Guidance, vol. 91, no. September 2000, pp. 1–11. https://doi.org/10.1520/D1557-12.1

  35. A. S. B., & Roesler, J. R. (2022). Ternary concrete with fractionated reclaimed asphalt pavement. ACI Materials Journal, 112(1). https://doi.org/10.14359/51687176

  36. Singh, S., Ransinchung, G. D., & Kumar, P. (2017). An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Materials, 148, 734–747. https://doi.org/10.1016/j.conbuildmat.2017.05.030

  37. Singh, S., Ransinchung, G. D., & Kumar, P. (2017). Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete. Construction and Building Materials, 156, 19–27. https://doi.org/10.1016/j.conbuildmat.2017.08.144

    Article  CAS  Google Scholar 

  38. Debbarma, S., Ransinchung, G. D. R. N., Singh, S., & Debbarma, S. (2019). Suitability of various supplementary cementitious admixtures for RAP inclusive RCCP mixes. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2019.1703981

    Article  Google Scholar 

  39. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. Journal of the Korean Ceramic Society, 57(2), 167–174. https://doi.org/10.1007/s43207-019-00014-y

    Article  CAS  Google Scholar 

  40. IS 516:2014. (2004). Method of tests for strength of concrete. IS 516-1959 (Reaffirmed 2004), p. New Delhi, India

  41. ASTM C1435. (2022). Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer. ASTM International 5–7

  42. Brand, A. S., & Roesler, J. R. (2017). Bonding in cementitious materials with asphalt-coated particles: part I—the interfacial transition zone. Construction and Building Materials, 130, 171–182. https://doi.org/10.1016/j.conbuildmat.2016.10.019

    Article  CAS  Google Scholar 

  43. Ribeiro, D. V., Silva, A. S., Labrincha, J. A., & Morelli, M. R. (2013). Rheological properties and hydration behavior of Portland cement mortars containing calcined red mud. Canadian Journal of Civil Engineering, 40(6), 557–566. https://doi.org/10.1139/cjce-2012-0230

    Article  CAS  Google Scholar 

  44. IS 5816. (1999). Indian standard Splitting tensile strength of concrete- method of test (first revision). Bureau Indian Standard New Delhi, vol. (reaffirme), pp. 1–14

  45. Ferrebee, E. C., Brand, A. S., Kachwalla, A. S., Roesler, J. R., Gancarz, D. J., & Pforr, J. E. Fracture properties of roller-compacted concrete with virgin and recycled aggregates. https://doi.org/10.3141/2441-17

  46. Tang, W. C., Wang, Z., Donne, S. W., Forghani, M., & Liu, Y. (2019). Influence of red mud on mechanical and durability performance of self-compacting concrete. Journal of Hazardous Materials, 379(June), 120802. https://doi.org/10.1016/j.jhazmat.2019.120802

    Article  CAS  PubMed  Google Scholar 

  47. American Society for Testing and Materials. (2013). ASTM C1747, Standard test method for determining potential resistance to degradation of pervious concrete by impact and abrasion. Astm C1747/C1747M-13, pp. 2–5. https://doi.org/10.1520/C1747

  48. Chen, X., et al. (2019). Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. Journal of Cleaner Production, 207, 789–800. https://doi.org/10.1016/j.jclepro.2018.09.263

    Article  CAS  Google Scholar 

  49. Debbarma, S., Ransinchung, G. D. R. N., Singh, S., & Kant, S. (2020). Resources, conservation & recycling utilization of industrial and agricultural wastes for productions of sustainable roller compacted concrete pavement mixes containing reclaimed asphalt pavement aggregates. Resources, Conservation and Recycling, 152(2019), 104504. https://doi.org/10.1016/j.resconrec.2019.104504

  50. ASTMC642-06. (2008). Astm C 642, Standard test method density, absorption, voids hardened concrete, pp. 11–13

  51. Singh, S., & Ransinchung, G. D. (2018). Durability properties of pavement quality concrete containing fine RAP. Advances in Civil Engineering Materials, 7(1), 271–290. https://doi.org/10.1520/ACEM20180012

    Article  CAS  Google Scholar 

  52. Debbarma, S., Ransinchung, G. D. R. N., & Singh, S. (2019). Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Construction and Building Materials, 199, 508–525. https://doi.org/10.1016/j.conbuildmat.2018.12.047

    Article  CAS  Google Scholar 

  53. Concretes, P. (1998). Standard test methods for chemical resistance of mortars, grouts, and monolithic. Current, 04(February), 1–6.

    Google Scholar 

  54. Singh, S., Ransinchung, G. D., & Kumar, R. N. P. (2018). Performance evaluation of RAP concrete in aggressive environment. Journal of Materials and Civil Engineering, 30(10), 04018231. https://doi.org/10.1061/(asce)mt.1943-5533.0002316

    Article  CAS  Google Scholar 

  55. Nandi, S., & Ransinchung, G. D. R. N. (2021). Performance evaluation and sustainability assessment of precast concrete paver blocks containing coarse and fine RAP fractions: a comprehensive comparative study. Construction and Building Materials, 300, 124042. https://doi.org/10.1016/j.conbuildmat.2021.124042

    Article  Google Scholar 

  56. Pelisser, F., Gleize, P. J. P., & Mikowski, A. (2012). Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C-S-H measured by nanoindentation. Journal of Physical Chemistry C, 116(32), 17219–17227. https://doi.org/10.1021/jp302240c

    Article  CAS  Google Scholar 

  57. Rossignolo, J. A. (2009). Interfacial interactions in concretes with silica fume and SBR latex. Construction and Building Materials, 23(2), 817–821. https://doi.org/10.1016/j.conbuildmat.2008.03.005

    Article  Google Scholar 

Download references

Acknowledgements

 The authors would like to convey their sincere thanks to Mr. M. Pavan Kumar for providing materials to carry out the experimental investigation.The authors also would like to convey their sincere thanks to Dr. K. Srikanth, Assistant Professor GMRIT & Mr. K. Rajendra Babu, Research Scholar, IIT Dhanbad for their valuable suggestions during revisions.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to B. A. V. Ram Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram Kumar, B., Ramakrishna, G. Sustainable Use of Red Mud and Reclaimed Asphalt Pavement Wastes in Roller Compacted Concrete. Int. J. Pavement Res. Technol. 17, 291–305 (2024). https://doi.org/10.1007/s42947-022-00236-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00236-0

Keywords

Navigation