Skip to main content
Log in

Rutting and Fatigue Performance of Aged Modified Asphalt Binders

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Rutting and fatigue are two major pavement distresses which affect both structural and functional performances of the flexible pavement. Linear amplitude sweep (LAS) and Multiple stress creep and recovery (MSCR) are two advanced methods to examine fatigue and rutting performance of asphalt binders respectively. The present study aims at examining the effect of ageing (short term and long term) and modification (polymer and warm mix) on the performance of asphalt binders. Both LAS and MSCR tests were conducted at different temperatures, stress/strain levels, and ageing conditions. Stress is a parameter that influences the performance of asphalt binder significantly so stress susceptibility was also evaluated for all the binders at different temperatures and ageing conditions. From the test results, it was found that ageing improves the stress susceptibility of the asphalt binders with respect to rutting parameters on the other hand ageing deteriorated the stress susceptibility concerning fatigue parameters. The applicability of different asphalt binders at different temperature and traffic conditions was also examined and it was found that most of the binders failed to fulfill the criteria at the temperatures which were well below their high-temperature performance grades. This highlighted the need to revise the Superpave criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Read, J., & Whiteoak, D. (2003). The shell bitumen handbook. Thomas Telford Services Ltd.

    Google Scholar 

  2. Saboo, N. (2016). “Performance characterization of polymer modified asphalt binders and mixes” Ph.D. thesis, Indian Institute of Technology, Roorkee, India.

  3. Singh, B., Saboo, N., & Kumar, P. (2017). Effect of short-term aging on creep and recovery response of asphalt binders. Journal of Transportation Engineering, Part B: Pavements, 143(4), 04017017.

    Google Scholar 

  4. Lu, X., Isacsson, U., & Ekblad, J. (1999). Rheological properties of SEBS, EVA and EBA polymer modified bitumens. Materials and Structures, 32(2), 131–139.

    Article  Google Scholar 

  5. Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897–1905.

    Article  Google Scholar 

  6. Airey, G. D. (1997). “Rheological characteristics of polymer modified and aged bitumens” Ph.D. thesis, University of Nottingham.

  7. Isacsson, U. L. F., & Lu, X. (1999). Characterization of bitumens modified with SEBS, EVA and EBA polymers. Journal of Materials Science, 34(15), 3737–3745.

    Article  Google Scholar 

  8. Cardone, F., Ferrotti, G., Frigio, F., & Canestrari, F. (2014). Influence of polymer modification on asphalt binder dynamic and steady flow viscosities. Construction and Building Materials, 71, 435–443.

    Article  Google Scholar 

  9. Traxler, R. N. (1961). Relation between asphalt composition and hardening by volatilization and oxidation. Proc. Association of Asphalt Paving Technologists, 30, 359–377.

  10. Curtis, C. W., Ensley, K., & Epps, J. (1993). “Fundamental properties of asphalt-aggregate interactions including adhesion and absorption” No SHRP-A-341. National Research Council.

  11. Petersen, J., R. Robertson, J. Branthaver, P. Harnsberger, J. Duvall, S. Kim, D. Anderson, D. Christiansen, and H. Bahia. (1994). “Binder characterization and evaluation: Volume 1” Rep. No. SHRP-A-367. Strategic Highway Research Program, National Research Council, Washington, DC. 

  12. Zhang, J., Walubita, L. F., Faruk, A. N. M., Karki, P., & Simate, G. S. (2015). Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance—a laboratory study. Construction and Building Materials, 94, 218–227. https://doi.org/10.1016/j.conbuildmat.2015.06.044

    Article  Google Scholar 

  13. Saboo, N., & Kumar, P. (2016). Analysis of different test methods for quantifying rutting susceptibility of asphalt binders. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001553

    Article  Google Scholar 

  14. Saboo, N., & Kumar, P. (2016). Performance characterization of polymer modified asphalt binders and mixes. Advances in Civil Engineering. https://doi.org/10.1155/2016/5938270

    Article  Google Scholar 

  15. Sabouri, M., Mirzaiyan, D., & Moniri, A. (2018). Effectiveness of linear amplitude sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance. Construction and Building Materials, 171, 281–290. https://doi.org/10.1016/j.conbuildmat.2018.03.146

    Article  Google Scholar 

  16. Singh, D., Girimath, S., & Ashish, P. K. (2019). Effect of recycled asphalt binder on high and intermediate temperature performance of polymer modified asphalt binder. International Journal of Pavement Research and Technology, 12, 486–496. https://doi.org/10.1007/s42947-019-0059-3

    Article  Google Scholar 

  17. Kim, H. H., Lee, M. S., & Lee, S. J. (2019). Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR). International Journal of Pavement Research and Technology, 12, 215–222. https://doi.org/10.1007/s42947-019-0027-y

    Article  Google Scholar 

  18. D’Angelo, J. A. (2009). The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10(sup1), 61–80.

    Article  Google Scholar 

  19. DuBois, E., Mehta, Y., & Nolan, A. (2014). Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder. Construction and Building Materials, 65, 184–190.

    Article  Google Scholar 

  20. Hintz, C., Velasquez, R., Johnson, C., & Bahia, H. (2011). Modification and validation of linear amplitude sweep test for binder fatigue specification. Transportation Research Record, 2207(1), 99–106.

    Article  Google Scholar 

  21. Saboo, N., & Kumar, P. (2016). Analysis of different test methods for quantifying rutting susceptibility of asphalt binders. Journal of Materials in Civil Engineering, 28(7), 04016024.

    Article  Google Scholar 

  22. Teymourpour, P., and Bahia, H. (2014). Linear amplitude sweep test: Binder grading specification and field validation. In Presentation on Binder Expert Task Group Meeting. Asphalt Research Consortium, Baton Rouge, LA, USA.

  23. Asphalt Institute. (2020). US state binder specifications. http://www.asphaltinstitute.org/engineering/specification-databases/us-state-binder-specifications. Accessed 20 Mar 2021.

  24. AASHTO M 332. (2014). Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. American Association of State and Highway Transportation Officials.

    Google Scholar 

  25. Golalipour, A., Bahia, H. U., & Tabatabaee, H. A. (2017). Critical considerations toward better implementation of the multiple stress creep and recovery test. Journal of Materials in Civil Engineering, 29(5), 04016295.

    Article  Google Scholar 

  26. Wasage, T. L. J., Stastna, J., & Zanzotto, L. (2011). Rheological analysis of multi-stress creep recovery (MSCR) test. International Journal of Pavement Engineering, 12(6), 561–568.

    Article  Google Scholar 

  27. Zhou, Z., Gu, X., Jiang, J., Ni, F., & Jiang, Y. (2018). Nonrecoverable behavior of polymer modified and reclaimed asphalt pavement modified binder under different multiple stress creep recovery tests. Transportation Research Record, 2672(28), 324–336.

    Article  Google Scholar 

  28. Jafari, M., Babazadeh, A., & Aflaki, S. (2015). Effects of stress levels on creep and recovery behavior of modified asphalt binders with the same continuous performance grades. Transportation Research Record, 2505(1), 15–23.

    Article  Google Scholar 

  29. Liu, J., Liu, J., Zhu, A., & Saboundjian, S. (2020). Evaluation of multiple stress-creep recovery test on Alaskan asphalt binders. Journal of Materials in Civil Engineering, 32(10), 04020302.

    Article  Google Scholar 

  30. Hintz, C., & Bahia, H. (2013). Simplification of linear amplitude sweep test and specification parameter. Transportation Research Record, 2370, 10–16.

    Article  Google Scholar 

  31. Jafari, M., & Babazadeh, A. (2016). Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep tests. Road Materials and Pavement Design, 17, 859–876. https://doi.org/10.1080/14680629.2015.1132631

    Article  Google Scholar 

  32. Saboo, N., Kumar, R., Kumar, P., & Gupta, A. (2018). Ranking the rheological response of SBS-and EVA-modified bitumen using MSCR and LAS tests. Journal of Materials in Civil Engineering, 30(8), 04018165. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002367

    Article  Google Scholar 

  33. Singh, B., & Kumar, P. (2019). Effect of polymer modification on the ageing properties of asphalt binders: Chemical and morphological investigation. Construction and Building Materials, 205, 633–641.

    Article  Google Scholar 

  34. ASTM D2872-12e1. (2012). Standard test method for effect of heat and air on a moving film of asphalt (Rolling Thin-Film Oven Test). ASTM International. https://doi.org/10.1520/D2872-12E01 West Conshohocken, PA.

    Article  Google Scholar 

  35. ASTM D6521-18. (2018). Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). ASTM International. https://doi.org/10.1520/D6521-18 West Conshohocken, PA.

    Article  Google Scholar 

  36. AASHTO TP 70. (2013). Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). American Association of State and Highway Transportation Officials.

    Google Scholar 

  37. AASHTO TP 101-14. (2014). Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. American Association of State Highway and Transportation Officials.

    Google Scholar 

  38. Nivitha, M. R., Prasad, E., & Krishnan, J. M. (2016). Ageing in modified bitumen using FTIR spectroscopy. International Journal of Pavement Engineering, 17(7), 565–577.

    Article  Google Scholar 

  39. Singh, B., Saboo, N., & Kumar, P. (2017). Use of Fourier transform infrared spectroscopy to study ageing characteristics of asphalt binders. Petroleum science and technology, 35(16), 1648–1654.

    Article  Google Scholar 

  40. Lu, X., & Isacsson, U. (2002). Effect of ageing on bitumen chemistry and rheology. Construction and Building materials, 16(1), 15–22.

    Article  Google Scholar 

  41. Tauste, R., Moreno-Navarro, F., Sol-Sánchez, M., & Rubio-Gámez, M. C. (2018). Understanding the bitumen ageing phenomenon: A review. Construction and Building Materials, 192, 593–609.

    Article  Google Scholar 

  42. Petersen, J. C. (2009). A review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships. Transportation Research Circular, (E-C140), Washington: Transportation Research Board. 

  43. Cortes, C., Perez, A., Fermoso, J., Costa, A., Guisado, F., Esquena, J., & Potti, J. (2010). Envejecimiento fotooxidativo de betunes asfálticos. Comunicaciones libres de la V Jornada Nacional de ASEFMA.

    Google Scholar 

  44. Tarsi, G., Varveri, A., Lantieri, C., Scarpas, A., & Sangiorgi, C. (2018). Effects of different aging methods on chemical and rheological properties of bitumen. Journal of Materials in Civil Engineering, 30(3), 04018009.

    Article  Google Scholar 

  45. Abbas, A. R., Papagiannakis, A. T., & Masad, E. A. (2004). Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes. Journal of Materials in Civil Engineering, 16(2), 133–139.

    Article  Google Scholar 

  46. Singh, B., Saboo, N., & Kumar, P. (2016). Modelling the complex modulus strain relationship of asphalt binders. Petroleum Science and Technology, 34(13), 1137–1144.

    Article  Google Scholar 

  47. Pei, J., Fan, Z., Liu, H., Zhang, J., Li, R., & Li, Y. (2016). Nonlinear viscoelastic model for asphalt mixture subjected to repeated loading. Road Materials and Pavement Design, 17(4), 892–905.

    Article  Google Scholar 

  48. Singh, B., & Kumar, P. (2020). Viscoelastic and morphological evaluation of aged polymer modified asphalt binders. International Journal of Civil Engineering, 18, 1077–1096. https://doi.org/10.1007/s40999-020-00517-4

    Article  Google Scholar 

  49. IS:1203. (1978). Indian standard methods for testing tar and bituminous materials: determination of penetration. Bureau of Indian Standards (BIS), New Delhi, India.

  50. IS:1205. (1978). Indian Standard methods for testing tar and bituminous materials: determination of softening point. Bureau of Indian Standards (BIS), New Delhi, India.

  51. IS:1206. (1978). Indian standard methods for testing tar and bituminous materials: determination of viscosity: absolute viscosity. Bureau of Indian Standards (BIS), New Delhi, India.

  52. ASTM-D7175. (2012). Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. ASTM International, West Conshohocken, PA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Kumar, P. Rutting and Fatigue Performance of Aged Modified Asphalt Binders. Int. J. Pavement Res. Technol. 15, 789–802 (2022). https://doi.org/10.1007/s42947-021-00053-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00053-x

Keywords

Navigation