Skip to main content
Log in

Compressive and tensile strength properties of pre-compressed and soaked natural fiber reinforced lime—fly ash stabilised soil

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

In this study, the effects of pre-compression, fiber inclusions and capillary soaking on the compressive and tensile strength properties of lime-fly ash stabilised soil were investigated. Randomly distributed 25 mm sisal fibers were mixed with stabilised soil at the percentages of 0.25%, 0.5% and 1% by dry mass of the soil. Both unreinforced and fiber composite specimens were subjected to the pre-compression stresses equivalent to 10% and 20% of the strength mobilised by the un-precompressed specimens. The pre-compression stresses were applied after 4h and 24h of accelerated curing at 40°C, after which the conditioned specimens were allowed to continue curing under constant conditions. The results revealed that capillary soaking in un-precompressed specimens caused average compressive strength reduction of 38% and 42% for unreinforced and reinforced specimens, respectively. Pre-compression caused loss of strength of 20% for both tension and compression due to fiber slippage and debonding at the fiber-matrix interface. Soil-fiber composite specimens performed better in compression than in tension however, there existed proportionality between tensile and compressive strengths beyond optimum strength indices \(\left(\frac{\text{q}_{\text{t}}}{\text{q}_{\text{u}}}\right)\) 0.1 to 0.17 for both pre-compression scenarios. Fiber inclusions endowed soaked stabilised soil with higher average compressive residual strength (90%) than tensile residual strength (50%). Fiber inclusions significantly improved ductility of the composite in both compression and tension due to the deformability of natural fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Latifi, F. Vahedifard,, E. Ghazanfari,, A. S. A. Rashid,, Sustainable usage of calcium carbide residue for stabilization of clays, J. Mater. Civ. Eng. 30 (6) (2018) 04018099-04018091-04018010.

    Google Scholar 

  2. A. Tabarsa, N. Latifi,, C. L. Meehan,, K. N. Manahiloh, Laboratory investigation and field evaluation of loess improvement using nanoclay - A sustainable material for construction, Constr. Build. Mater. 158 (2018) 454–463.

    Google Scholar 

  3. N. Latifi, F. Vahedifard,, E. Ghazanfari,, S. Horpibulsuk,, A. Marto,, J. Williams, Sustainable improvement of clays using low-carbon nontraditional additive, Int. J.Geomech. 18 (3) (2017) 04017162-04017161-04017110.

    Google Scholar 

  4. N. Latifi, A. Eisazadeh, A. Marto, C.L. Meehan, Tropical residual soil stabilization: A powder form material for increasing soil strength, Constr. Build. Mater. 147 (2017) 827–836.

    Google Scholar 

  5. N. Latifi, C.L Meehan, Strengthening of Montmorillonitic and Kaolinitic Clays with Calcium Carbide Residue: A Sustainable Additive for Soil Stabilization, Geotech. Front. 2017 (2017) 154–163.

    Google Scholar 

  6. N. Latifi, C. L Meehan, M. Z. Majid, S. Horpibulsuk, Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: a micro-level study, J. Appl. Clay. Sci. 132 (2016) 182–193.

    Google Scholar 

  7. L. D. Jerez, O. E. Gómez,, C. A. Murillo, Stabilization of Columbian lateritic soil with a hydrophobic compound (organosalane), Inter. J. Pavement Res. Technol. 11 (6) (2018) 639–646.

    Google Scholar 

  8. A. K. Yadav, K. Gaurav,, R. Kishor,, S. K. Suman, Stabilization of alluvial soil for subgrade using rice husk ash,sugarcase bagasse ash and cow dung ash for rural roads, Int.J. Pav.Res.Tech 10 (3) (2017) 254–261.

    Google Scholar 

  9. S. Horpibulsuk, C. Phetchuay, A. Chinkulkijniwat, Soil Stabilization by Calcium Carbide Residue and Fly Ash, J. Mater. Civ. Eng. 24 (2) (2012) 184–193.

    Google Scholar 

  10. T. Zhang, G. Cai,, S. Liu, Application of lignin-stabilized silty soil in highway subgrade: A macroscale laboratory study, J. Mater. Civ. Eng. 30 (4) (2018) 04018034-04018031-04018016.

    Google Scholar 

  11. A. Abdulrahman, M. Bouasker, M. Al-Muhkhtar, Soil-water characteristic curve of lime treated gypseous soil, J. App. Clay Sci. 102 (2014) 128–138.

    Google Scholar 

  12. A. Al-Swaidani, I. Hammoud, A. Meziab, Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil, J. Rock. Mech. Geotech. Eng. 8 (5) (2016) 714–725.

    Google Scholar 

  13. A. K Jha, P.V. Sivapullaiah, Volume change behavior of lime treated gypseous soil — influence of mineralogy and microstructure, J. Appl. Clay. Sci. 119 (2016) 202–212.

    Google Scholar 

  14. M. Al-Mukhtar, A. Lasledj, J. F Alcover, Behaviour and mineralogy changes in lime-treated expansive soil at 20°C, J. Appl. Clay. Sci. 50 (2) (2010) 191–198.

    Google Scholar 

  15. M. Al-Mukhtar, A. Lasledj, J. F. Alcover, Behaviour and mineralogy changes in lime-treated expansive soil at 50 °C, J. Appl. Clay. Sci. 50 (2) (2010) 199–203.

    Google Scholar 

  16. M. D. Sante, E. Fratalocchi,, F. Mazzieri,, E. Pasqualini,, Time of reactions in a lime treated clayey soil and influence of curing conditions on its microstructure and behaviour, J. Appl. Clay. Sci. 99 (2014) 100–109.

    Google Scholar 

  17. A. A. B. Moghal, B. C. Chittoori,, B. M. Basha,, M. A. Al-Shamrani,, Target reliability approach to study the effect of fiber reinforcement on UCS behavior of Lime treated semiarid Soil, J. Mater. Civ. Eng. 29 (6) (2017) 04017014-04017011-04017015.

    Google Scholar 

  18. V. Anggraini, A. Asadi,, B. B. Huat,, H. Nahazanan, Effects of coir fibers on tensile and compressive strength of lime treated soft soil, J. Measure. 59 (2014) 372–381.

    Google Scholar 

  19. A. A Moghal, P.V. Sivapullaiah, Effect of pozzolanic reactivity on compressibility characteristics of stabilised Low Lime Fly Ashes, Geotech. Geol. Eng. 29 (5) (2011) 665–673.

    Google Scholar 

  20. S.R. Kaniraj, V. Gayathri, Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions, Geotext. Geomembr. 21 (3) (2003) 123–149.

    Google Scholar 

  21. E.O. Tastan, T. B. Edil,, C. H. Benson,, A. H. Aydilek, Stabilization of Organic Soils with Fly Ash, J. Geotech. Geoenviron. Eng. 137 (9) (2011) 819–833.

    Google Scholar 

  22. A. A. Adili, R. Azzam, G. Spagnoli, J. Schrade, Strength of soil reinforced with fiber materials (papyrus), Soil Mech. Found. Eng. 48 (6) (2012) 241–247.

    Google Scholar 

  23. E. A. Basha,, R. Hashim,, H. B. Mahmud,, A. S. Muntohar,, Stabilization of residual soil with rice husk ash and cement, Constr. Build. Mater. 19 (6) (2005) 448–453.

    Google Scholar 

  24. T. Park, S. Tan, Enhanced performance of reinforced soil walls by the inclusion of short fiber, Geotext. Geomembr. 23 (4) (2005) 348–361.

    Google Scholar 

  25. J. Prabakar, R.S. Sridhar, Effect of random inclusion of sisal fibre on strength behaviour of soil, Constr. Build. Mater. 16 (2) (2002) 123–131.

    Google Scholar 

  26. F. Ahmad, F. Bateni,, M. Azmi,, Performance evaluation of silty sand reinforced with fibres, Geotext. Geomembr. 28 (1) (2010) 93–99.

    Google Scholar 

  27. M. M. Kabir, H. Wang,, K. T. Lau,, F. Cardona,, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B: Eng. 43 (7) (2012) 2883–2892.

    Google Scholar 

  28. B. Singh, M. Gupta, A. Verma, Influence of fiber surface treatment on the properties of sisal-polyester composites, Polym. Compos. 17 (6) (1996) 910–918.

    Google Scholar 

  29. G.W. Beckermann, K.L. Pickering, Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification, Compos. Part A:Appl. Sci. Manuf. 39 (6) (2008) 979–988.

    Google Scholar 

  30. M. Bera, R. Alagirusamy, A. Das, A study on interfacial properties of jute-PP composites, J. Reinf. Plast. Compos. 29 (20) (2010) 3155–3161.

    Google Scholar 

  31. K. Goda, M. S. Sreekala,, A. Gomes,, T. Kaji,, J. Ohgi,, Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers, Composi. Part A:Appl. Sci. Manuf. 37 (12) (2006) 2213–2220.

    Google Scholar 

  32. S. M. Hejazi, M. Sheikhzadeh,, S. M. Abtahi,, A. Zadhoush, A simple review of soil reinforcement by using natural and synthetic fibers, Constr. Build.Mater. 30 (2012) 100–116.

    Google Scholar 

  33. L. Pickering, M. G. Efendy,, T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Compos: Part A 77 (2016) 98–112.

    Google Scholar 

  34. K. Ghavami, R. Filho, P. Barbosa, Behaviour of composite soil reinforced with natural fibers, J. Cem. Concr. Compos. 21 (1) (1999) 39–48.

    Google Scholar 

  35. J. A. Baldovino, E. B. Moreira,, W. Teixeira,, R. L. Izzo,, J. L. Rose,, Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil, J. Rock. Mech. Geotech. Eng. 10 (1) (2018) 188–194.

    Google Scholar 

  36. J. Li, C. Tang,, D. Wang,, X. Pei,, B. Shi, Effect of discrete fibre reinforcement on soil tensile strength, J. Rock Mech. Geotech. Eng. 6 (2) (2014) 133–137.

    Google Scholar 

  37. B.A. Albrecht, C.H Benson, Effect of desiccation on compacted natural clay. J. Geotech. Geoenviron. Eng. 127 (1) (2001) 67–75.

    Google Scholar 

  38. C.J. Miller, H. Mi, N. Yesiller, Experimental analysis of desiccation crack propagation in clay liners, J. Amer. Water Resourc. Assoc. 34 (3) (1998) 677–686.

    Google Scholar 

  39. P. H. Morris, J. Graham,, D. J. Williams,, Cracking in drying soils, Can. Geotech. J. 29 (2) (1992) 263–277.

    Google Scholar 

  40. N. C. Consoli, R. R. de Moraes,, L. Festugato,, Parameters controlling tensile and compressive strength of fiber-reinforced cemented soil, J. Mater. Civ. Eng. 25 (10) (2013) 1568–1573.

    Google Scholar 

  41. N. C. Consoli, P. D. M. Prietto,, L. da Silva Lopes Jr,, D. Winter,, Control factors for the long term compressive strength of lime treated sandy clay soil, J. Trans. Geotech. 1 (3) (2014) 129–136.

    Google Scholar 

  42. Moe Moe Thwea, Kin Liao, Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites, Compos. Sci. Technol. 63 (3-4) (2003) 375–387.

    Google Scholar 

  43. A. Kumar, B. S. Walia,, A. Bajaj,, Influence of fly Ash, lime, and polyester Fibers on compaction and strength properties of expansive soil, J. Mater. Civ. Eng. 19 (3) (2007) 242–248.

    Google Scholar 

  44. I. Kafodya, F.N Okonta, Density control method for compression test of compacted lime-flyash stabilised fiber-soil mixtures, Methods X 5 (2018) 848–856.

    Google Scholar 

  45. D. N. Saheb, J. P. Jog, Natural fiber polymer composites: a review, Adv. Polym. Technol. 18 (4) (1999) 351–363.

    Google Scholar 

  46. A.K. Bledzki, V.E. Sperber, O. Faruk, Natural and Wood Fiber Reinforcement in Polymers, Rapra Review Reports 13 (2002) 1–144.

    Google Scholar 

  47. N. Chand, S. Hashmi, Mechanical properties of sisal fibre at elevated temperatures, J. Mater. Sci. 28 (24) (1993) 6724–6728.

    Google Scholar 

  48. D. Little, Evaluation of structural properties of lime stabilized soils and aggregates, National Lime Association, Arlington, 1999. p. 49.

    Google Scholar 

  49. K.J. Osinubi, Influence of compactive efforts and compaction delays on lime-treated soil, J. Trans. Eng. 124 (1998) 149–155, J.Trans. Eng. 124(2) (1998) 149–155.

    Google Scholar 

  50. National Lime Association, Technical brief: Mixture design and testing procedures for lime stabilized soil, National Lime Association, Arlington, 2006.

    Google Scholar 

  51. C. S. Tang, B. Shi,, L. Z. Zhao,, Interfacial shear strength of fiber reinforced soil, Geotext. Geomembr. 28 (1) (2010) 54–62.

    Google Scholar 

  52. C. Tang, B. Shi,, W. Gao,, F. Chen,, Y. Cai,, Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil, Geotext. Geomembr. 25 (3) (2007) 194–202.

    Google Scholar 

  53. Y. K. Wu, Y. B. Li,, B. Niu,, Investigation of mechanical properties of randomly distributed sisal fiber reinforced soil, Mater. Res. Inn. 18(2) (2014) 953–959.

    Google Scholar 

  54. I. Kafodya, F. Okonta, Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil, Constr. Build. Mater. 170 (2018) 737–746.

    Google Scholar 

  55. T. Yetimoglu, O. Salbas, A study on shear strength of sands reinforced with randomly distributed discrete fibers, O. Salbas,, Geotext. Geomembr. 21 (2) (2003) 103–110.

    Google Scholar 

  56. E. Ibraim, S. Fourmont, Behaviour of Sand Reinforced with Fibres, in: H. I. Ling, (Ed), Geotechnical Symposium in Rome 146, springer, Rome, 2006. pp. 807–818.

    Google Scholar 

  57. A. Diambra, A.R. Russell, E. Ibraim, D. Muir Wood, Determination of fibre orientation distribution in reinforced sand, Geotechnique 57 (7) (2007) 623–628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Okonta.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafodya, I., Okonta, F. Compressive and tensile strength properties of pre-compressed and soaked natural fiber reinforced lime—fly ash stabilised soil. Int. J. Pavement Res. Technol. 13, 497–509 (2020). https://doi.org/10.1007/s42947-020-0074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0074-4

Keywords

Navigation