Skip to main content
Log in

Optimization of California bearing ratio of tropical black clay soil treated with cement kiln dust and metakaolin blend

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The study showcase the optimization of California bearing ratio (CBR) values of expansive soil treated with cement kiln dust (CKD) and metakaolin (MTK) blend based on Scheffe optimization method. The CBR values utilized in the design of road infrastructure is an important parameter because it provides the rating of soil material for use as subgrade, sub-base and/or base course of road pavement. Therefore, applying Scheffe optimization technique will eliminate the random selection of design mix ratios and other associated disadvantages during CBR tests. Based on the optimization exercise and it results, the maximum CBR (unsoaked and soaked) values of 69 and 50 % were achieved with a corresponding mix ratio of 1.0:0.30:0.35:0.50 for black cotton soil, water, cement kiln dust and metakaolin respectively. During the course of this study, the laboratory results were used to develop two CBR models. The scheffe models developed are Ŷ = 34X1 + 46X2 + 40X3 + 69X4 − 8X1X2 − 4X1X3 + 34X1X4 + 8X2X3 + 34X2X4 + 30X3X4 and Ŷ = 17X1 + 28X2 + 22X3 + 50X4 − 10X1X2 − 6X1X3 + 42X1X4 + 8X2X3 + 40X2X4 + 40X3X4 for CBR unsoaked and soaked, respectively. In addition, the mathematical models were statistically scrutinized, confirmed for the adequacy and validity based on the outcomes of student t-test and analysis of variance (ANOVA). Also, the scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were used to explore the morphological and composition variations of the natural soil in contrast with the typically optimized soil-CKD-MTK blend. However, the SEM of the unaltered soil sample showed a smooth like surface, whereas the soil mixture optimally treated does not show same but rather demonstrated a rough like surfaced morphology. Thus, the observed variations might be due to the alterations of the soil fabrics possibly enhanced by the development of cementitious compounds (calcium silicate hydrate and calcium aluminate hydrate) as a result of pozzolanic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Etim, A. O. Eberemu, K. J. Osinubi, Stabilization of black cotton soil with iron ore tailings as admixture, Transp. Geotech. 10 (2017) 85–95 https://doi.org/10.1016/j.trgeo.2017.01.002

    Google Scholar 

  2. Y. Liu, Y Su, A Namdar, G Zhou, Y She, Q Yang, Utilization of cementitious material from residual rice husk ash and lime in stabilization of expansive soil, Adv. Civ. Eng. (2019) https://doi.org/10.1155/2019/5205276

  3. K. A. Nadgouda, R. A. Hegde, The effect of lime stabilization on properties of black cotton soil, Indian Geotechnical Conference, Mumbai, India, 2010, pp. 511–514.

  4. S. A. Ola, The geotechnical properties of black cotton soils of North Eastern Nigeria, Ola SA (ed) Tropical soils of Nigeria in engineering practice, Balkama, Rotterdam, 1983, pp. 160–178

    Google Scholar 

  5. L. A. Balogun, Effect of sand and salt additives on some geotechnical properties of lime stabilized black cotton soil, Nigeria Engi. 26(2) (1991) 15–24.

    Google Scholar 

  6. K. J. Osinubi, Lime modification of black cotton soils, Spectrum J. 2(1) (1995) 112–122

    Google Scholar 

  7. A. Sridharan, J. P. Prashanth, P. V. Sivapullaiah, Effect of fly ash on the unconfined compressive strength of black cotton soil, Proc. Institution of Civil Engineers — Ground Improvement, London, UK, 1(3) (1997) 169–175 https://doi.org/10.1680/gi.1997.010304.

    Google Scholar 

  8. L. Chen, D. F. Lin, Stabilization treatment of soft subgrade soil by sewage sludge ash and cement, J. Hazard. Mater. 162(1) (2009) 321–327 https://doi.org/10.1016/j.jhazmat.2008.05.060.

    MathSciNet  Google Scholar 

  9. K. J. Osinubi, T. S. Ijimdiya, I. Nmadu, Lime stabilization of black cotton soil using bagasse ash as admixture, Adv. Mater. Res. 62–64 (2009) 3–10 https://doi.org/10.4028/www.scientific.net/AMR.62-64.3

    Google Scholar 

  10. O. Folagbade, M. George, Groundnut shell ash stabilization of black cotton soil, Electronic J. Geotech. Eng. 15(1) (2010) 415–428.

    Google Scholar 

  11. O. Baser, Stabilization of expansive soils using waste marble dust, PhD Thesis, Middle East Technical University, Ankara, Turkey, 2009.

    Google Scholar 

  12. R. Brooks, F. F. Udoeyo, K. V. Takkalapelli, Geotechnical properties of problem soils stabilized with fly ash and limestone dust in Philadelphia, J. Mater. Civ. Eng. 23(5) (2011) 711–716. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214.

    Google Scholar 

  13. K. M. A. Hossain, L. Mol, Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes, Constr. Build. Mater. 25(8) (2011) 3495–3501 https://doi.org/10.1016/j.conbuildmat.2011.03.042.

    Google Scholar 

  14. A. Kumar, P. V. Sivapullaiah Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer, Soils Foundations (2016) 1–8 https://doi.org/10.1016/j.sandf.2016.02.004.

  15. N. S. Parihar, V. K. Garlapati, R. Ganguly, Stabilization of black cotton soil using waste glass, Handbook of Environmental Materials Management, Springer International Publishing, Cham, 2018, pp. 1–16.

    Google Scholar 

  16. A. I. M. Ismail, Z. L. Belal, Use of cement kiln dust on the engineering modification of soil materials, Nile Delta, Egypt, Geotech. Geological Eng. 34 (2016) 463–469.

    Google Scholar 

  17. S. Peethamparan, J. Olek, J. Lovell, Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behaviour and potential suitability for soil stabilization, Cem. Concr. Res. 38 (2008) 803–815.

    Google Scholar 

  18. J. M. Justice Evaluation of metakaolins for use as supplementary cementitious materials, (MSc. Thesis), School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2005.

    Google Scholar 

  19. K. E. Kurtis, Benefits of metakaolin in HPC, HPC Bridge Views 67 (2011) 6–9.

    Google Scholar 

  20. S. Wild, J. M. Khatib, A. Jones, Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete, Cem. Concr. Res. 26(10) (1996) 1537–1544.

    Google Scholar 

  21. S. Wild, J. M. Khatib, Portlandite consumption of metakaolin cement pastes and mortars, Cem. Concr. Res. 27(1) (1997) 137–146.

    Google Scholar 

  22. C. S. Poon, L. Lam, S. C. Kou, Y. L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes, Cem. Concr. Res. 31(9) (2001) 1301–1306.

    Google Scholar 

  23. B. B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: A review. Cement & Concrete Composites, 23 (2001) 441–454.

    Google Scholar 

  24. A. L. Velosa, F. Rocha, R. Veiga, Influence of chemical and mineralogical composition of metakaolin on mortar characteristics, Acta Geodyn. Geomater., Vol. 6, No. 1 (153) (2009) 121–126

    Google Scholar 

  25. F. O. P. Oriola, G. Moses, J. O. Afolayan, Effects of combining metakaolin and cement kiln dust as cement replacement material in concrete, Academy J. Sci. Eng. 9(1) (2015) 101–111

    Google Scholar 

  26. A. N. Swaminathen, S. R. Ravi, Use of rice husk ash and metakaolin as pozzolonas for concrete: A Review. International Journal of Applied Engineering Research, 11(1) (2016) 656–664

    Google Scholar 

  27. J. O. Akinyele, S. O. Odunfa, A. A. Famoye, S. I. Kuye, Structural behavior of metakaolin infused concrete structure, Nigerian J. Technol. 36(2) (2017) 331–338

    Google Scholar 

  28. I. A. Adamu, A. Garba, A. M. Maleka, Strength characteristics of cement stabilized black cotton soil using metakaolin as an admixture, Multi-disciplinary academic conference on sustainable development, M. L. Audu Auditorium, Federal Polytechnic, Bauchi, 2 (2) 2014.

    Google Scholar 

  29. G. M. Ayininuola, O. A. Adekitan, Compaction characteristics of lateritic soils stabilised with cement-calcined clay blends, Épitőanyag-J. Silicate Based Compos. Mater. 69(2) (2017) 33–39. https://doi.org/10.14382/epitoanyag-jsbcm.2017.7

    Google Scholar 

  30. I. C. Attah, J. C. Agunwamba, R. K. Etim, N. M. Ogarekpe, Modelling and predicting of CBR values of lateritic soil treated with metakaolin for road material, ARPN J. Eng. Appl. Sci. 14(20) (2019) 3609–3618.

    Google Scholar 

  31. J. S. Trivedi, S. Nair, C. Iyyunni, Optimum utilization of fly ash for stabilization of sub-grade soil using genetic algorithm, Proc. Eng. 51 (2013) 250–258

    Google Scholar 

  32. J. A. Abdalla, M. F. Attom, R. Hawileh, Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network, Environ. Earth Sci. 73(9) (2015) 5463–5477

    Google Scholar 

  33. U. N. Okonkwo, J. C. Agunwamba, Classical optimization of bagasse ash content in cement-stabilized lateritic soil, Nigerian J. Technol. 35(3) (2016) 481–490

    Google Scholar 

  34. K. Onyelowe, G. Alaneme, C. Igboayaka, F. Orji, H. Ugwuanyi, D. B. Van, M. N. Van, Scheffe optimization of swelling, California bearing ratio, compressive strength and durability potentials of quarry dust stabilized soft clay soil, Mater. Sci. Energy Technol. 2, (2019) 67–77. https://doi.org/10.1016/j.mset.2018.10.005

    Google Scholar 

  35. O. A. Oguaghamba, F. O. Okafor, V. C. Anokwute, Application of Scheffe’s model for stabilization of Amuro-Okigwe subgrade using male inflorescence of oil palm ash, Nigerian J. Technol. 38(1) (2019) 60–74.

    Google Scholar 

  36. I. C. Attah, R. K. Etim, G. U. Alaneme, O. B. Bassey, Optimization of mechanical properties of rice husk ash concrete using Scheffe’s theory, SN Appl. Sci. Springer Nature Switzerland AG 928 (2) (2020) https://doi.org/10.1007/s42452-020-2727-y

  37. G. U. Alaneme, K. C. Onyelowe, M. E. Onyia, D. Bui Van, E. M. Mbadike, M. U. Dimonyeka, I. C. Attah, C. Ogbonna, U. I. Iro, S. Kumari, A. A. Firoozi, I. Oyagbola, Modelling of the swelling potential of soil treated with quicklime-activated rice husk ash using fuzzy logic, Umudike J. Eng. Technol. 6(1) (2020) 1–22 https://doi.org/10.33922/j.ujet_v6i1_1

    Google Scholar 

  38. G. U. Alaneme, K. C. Onyelowe, M. E. Onyia, D. Bui Van, E. M. Mbadike, C. N. Ezugwu, M. U. Dimonyeka, I. C. Attah, C. Ogbonna, C. Abel, C. C. Ikpa, I. M. Udousoro, Modelling volume change properties of hydrated-lime activated rice husk ash modified soft soil for construction purposes by artificial neural network, Umudike J. Eng. Technol. 6(1) (2020) 88–110 https://doi.org/10.33922/j.ujet_v6i1_9

    Google Scholar 

  39. G. U. Alaneme, M. M. Elvis, Optimization of flexural strength of palm nut fibre concrete using Scheffe’s theory, Mater. Sci. Energy Technol. 2(2) (2019) 272–287. https://doi.org/10.1016/j.mset.2019.01.006

    Google Scholar 

  40. Y. M. R. Gamil, I. H. Bakar, The development of mathematical prediction model to predict resilient modulus for natural soil stabilized by Pofa-Opc additive for the use in unpaved road design, IOP Conference Series: Mater. Sci. Eng., 2016, pp. 136. https://doi.org/10.1088/1757-899X/136/1/012007

  41. Y. Gamil, K. A. Zamahri, I. Bakar, Application of Scheffe’s theory to develop mathematical prediction model to predict UCS for hybrid containing organic soil and POFA-OPC additives. Civ. Eng. Architect. 6(2) (2018) 54–64. https://doi.org/10.13189/cea.2018.060202

    Google Scholar 

  42. M. Gen, R. Cheng, Genetic Algorithm and Engineering Design, John Wiley, New York, USA, 1997.

    Google Scholar 

  43. H. Scheffe, Experiments with Mixtures, J. Royal Statistic. Soci., Ser. B. 20 (1958) 344–360.

    MathSciNet  MATH  Google Scholar 

  44. L. K. Yadu, R. K. Tripathi, D. V. Singh, Laboratory performance evaluation of stabilized black cotton soil with rice husk ash, J. Chhattisgarh Swami Vivekan Tech, University Bhilai 4(1) (2011) 50–55

    Google Scholar 

  45. British Standards Institute, Methods of Testing Soil for Civil Engineering Purposes. BS 1377. London, UK, 1990.

  46. British Standards Institute, Methods of Tests for Stabilized Soils. BS 1924. London, UK, 1990.

  47. Nigerian General Specification, Roads and Bridges Works. Federal Ministry of Works and Housing, Lagos, Nigeria, 1997.

  48. American Association of State Highway and Transportation Official, Standard Specifications for Transportation, Material and Method of Sampling and Testing, 14th Edition, AASHTO, Washington DC, USA, 1986

    Google Scholar 

  49. American Standard for Testing Material, Annual Book of Standards Vol. 04.08. ASTM, West Conshohocken, PA, USA, 1992.

    Google Scholar 

  50. M. D. Gidigasu, Importance of material selection, construction control and field performance studies in developing acceptance specification for laterite paving gravels, Sols Rocha 5 (1) (1982).

  51. R. K. Etim, I. C. Attah, N. M. Ogarekpe, E. E. Robert, Geotechnical behaviour of lateritic soil — oyster shell ash mixtures. Proceedings of 16th International Conference and Annual General Meeting 2018 of Nigerian Institution of Civil Engineers. Theme: Transforming National Economy through Sustainable Civil Engineering Infrastructure, Paradise 2018. Calabar Intl. Convention Centre, Cal., Cross River State, 2018, pp. 45–52

    Google Scholar 

  52. R. K. Etim, I. C. Attah, P. Yohanna, S. J. Eshiet, Geotechnical properties of lateritic soil treated with periwinkle shell ash. Proceedings of 16th International Conference and Annual General Meeting 2018 of Nigerian Institution of Civil Engineers. Theme: Transforming National Economy through Sustainable Civil Engineering Infrastructure, Paradise 2018. Calabar Intl. Convention Centre, Cal., Cross River State, 2018, pp. 148–156

    Google Scholar 

  53. J. E. Sani, R. K. Etim, A. Joseph, Compaction behaviour of lateritic soil-calcium chloride mixtures, Geotech. Geol. Eng. (2018) https://doi.org/10.1007/s10706-018-00760-6

  54. R. K. Etim, I. C. Attah, A. O. Eberemu, P. Yohanna, Compaction behaviour of periwinkle shell ash treated lateritic soil for use as road sub-base construction material, J. Geoeng. 14(3) (2019) 179–190 https://doi.org/10.6310/jog.201909_14(3).6

    Google Scholar 

  55. I. C. Attah, R. K. Etim, Experimental investigation on the effects of elevated temperature on geotechnical behaviour of tropical residual soils, SN Appl. Sci. 370 (2) (2020) https://doi.org/10.1007/s42452-020-2149-x

  56. R. K. Etim, I. C. Attah, P. Yohanna, Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction, Inter. J. Pavement Res. Technol. (2020). https://doi.org/10.1007/s42947-020-0290-y

  57. J. K. Mitchell, Z. V. Solymar, Time dependent strength gain in freshly deposited or densified sand, J. Geotech. Eng. 110 (11) (1983) Paper No.19267

  58. L. R. Reyes-Gutiérrez, E. T. Romero-Guzmán, A. Cabral-Prieto, R. Rodríguez-Castillo, Characterization of chromium in contaminated soil studied by SEM, EDS, XRD and Mossbauer spectroscopy, J. Minerals Mater. Char. Eng. 7(1) (2007) 59–70.

    Google Scholar 

  59. S. Peethamparan, J. Olek, S. Diamond, Mechanism of stabilization of Na-montmorillonite clay with cement kiln dust. Cem. Concr. Res. 39(7) (2009) 580–589

    Google Scholar 

  60. N. K. Sharma, S. K. Swain, U. C. Sahoo, Stabilisation of a clayed soil with fly ash and lime: a micro level investigation, Geotech. Geol. Eng. 30(5) (2012) 1197–1205. https://doi.org/10.1007/s10706-012-9532-3

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Management of Akwa Ibom State University.

Funding

This research was funded by Federal Ministry of Education NEEDS Assessment Intervention Fund in Nigeria. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imoh Christopher Attah.

Additional information

Conflict of interest

The work is part of a Ph.D research work undertaken by Engr. Imoh Christopher Attah under the supervision of Engr. Prof. F. O. Okafor and Engr. Prof. O. O. Ugwu. No potential conflict of interest was reported by the Authors.

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attah, I.C., Okafor, F.O. & Ugwu, O.O. Optimization of California bearing ratio of tropical black clay soil treated with cement kiln dust and metakaolin blend. Int. J. Pavement Res. Technol. 14, 655–667 (2021). https://doi.org/10.1007/s42947-020-0003-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0003-6

Keywords

Navigation