Skip to main content
Log in

Constructing inter-diffusive PtCuNi/WO3 interface to enhance the catalytic activity and stability in oxygen reduction

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Platinum-group-metal-based alloy nanocrystals have been considered as the most efficient catalysts for oxygen reduction reaction (ORR). However, the poor stability issues limit their further deployment in industrialization. Tungsten oxide (WO3) has received attention due to its intrinsic electrochemical stability and proton absorption/desorption capability. In this work, we prepared PtCuNi/WO3/C hybrid catalyst with inter-diffusive alloy/WO3 interface on carbon. The catalyst exhibits enhanced activity and stability associated with the WO3 content. The characterization results suggest that the increased activity originates from the complementary proton supply of non-stoichiometric HxWO3. Moreover, WO3 prevents the particle from dissolution and detachment under vigorous electrochemical polarizations. The enhanced stability originates from the electronic interaction established between Pt and W. This work provides new strategies to design high-performance ORR catalysts by taking the merits of WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data can be provided on the reasonable request.

References

  1. Hernández-Pichardo ML, González-Huerta RG, del Angel P, Tufiño-Velazquez M, Lartundo L. The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts. Int J Hydrogen Energy. 2015;40(48):17371.

    Article  Google Scholar 

  2. Sharma R, Andersen SM. Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catal. 2018;8(4):3424.

    Article  CAS  Google Scholar 

  3. Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat Nanotechnol. 2021;16(2):140.

    Article  CAS  PubMed  Google Scholar 

  4. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang Y, Duan X, Mueller T, Huang Y. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science. 2015;348(6240):1230.

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Zhao Z, Cheng T, Fortunelli A, Chen C, Yu R, Zhang Q, Gu L, Merinov B, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard W, Huang Y, Duan X. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science. 2016;354(6318):1414.

    Article  CAS  PubMed  Google Scholar 

  6. Huang C, Dong W, Dong C, Wang X, Jia B, Huang F. Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction. Dalton Trans. 2020;49(5):1398.

    Article  CAS  PubMed  Google Scholar 

  7. Yang H, Liu Y, Liu X, Wang X, Tian H, Waterhouse GIN, Kruger PE, Telfer SG, Ma S. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience. 2022;2(2):227.

  8. Song A, Tian H, Yang W, Yang W, Xie Y, Liu H, Wang G, Shao G. Enhanced confinement synthesis of atomically dispersed Fe–N–C catalyst from resin polymer for oxygen reduction. J Energy Chem. 2022;65:630.

    Article  CAS  Google Scholar 

  9. Dong C, Zhang X, Zhang S, Zhao S, Lin X, Wang X, Zhang Y, Huang F. Manipulating oxygenate adsorption on N-doped carbon by coupling with CoSn alloy for bifunctional oxygen electrocatalyst. Green Energy Environ. https://doi.org/10.1016/j.gee.2022.02.005.

  10. Sun J, Du L, Sun B, Han G, Ma Y, Wang J, Huo H, Zuo P, Du C, Yin G. A bifunctional perovskite oxide catalyst: the triggered oxygen reduction/evolution electrocatalysis by moderated Mn–Ni co-doping. J Energy Chem. 2021;54:217.

    Article  CAS  Google Scholar 

  11. Jayabal S, Saranya G, Geng D, Lin LY, Meng X. Insight into the correlation of Pt–support interactions with electrocatalytic activity and durability in fuel cells. J Mater Chem A. 2020;8(19):9420.

    Article  CAS  Google Scholar 

  12. Cherevko S, Kulyk N, Mayrhofer KJJ. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy. 2016;29:275.

    Article  CAS  Google Scholar 

  13. Zhang J, Yuan Y, Gao L, Zeng G, Li M, Huang H. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv Mater. 2021;33(20):2006494.

    Article  CAS  Google Scholar 

  14. He C, Wang X, Sankarasubramanian S, Yadav A, Bhattacharyya K, Liang X, Ramani V. Highly durable and active Pt/Sb-doped SnO2 oxygen reduction reaction electrocatalysts produced by atomic layer deposition. ACS Appl Energy Mater. 2020;3(6):5774.

    Article  CAS  Google Scholar 

  15. Wu Z, Dang D, Tian X. Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl Mater Interfaces. 2019;11(9):9117.

    Article  CAS  PubMed  Google Scholar 

  16. Dou M, Hou M, Li Z, Wang F, Liang D, Shao Z, Yi B. Pt/WO3/C nanocomposite with parallel WO3 nanorods as cathode catalyst for proton exchange membrane fuel cells. J Energy Chem. 2015;24(1):39.

    Article  Google Scholar 

  17. Tian H, Cui X, Shi J. Emerging electrocatalysts for PEMFCs applications: tungsten oxide as an example. Chem Eng J. 2021;421:129430.

    Article  CAS  Google Scholar 

  18. Rutkowska IA, Wadas A, Zoladek S, Skunik-Nuckowska M, Miecznikowski K, Negro E, Noto VD, Zlotorowicz A, Zelenay P, Kulesza PJ. Activation of reduced-graphene-oxide supported Pt nanoparticles by aligning with WO3-nanowires toward oxygen reduction in acid medium: diagnosis with rotating-ring-disk voltammetry and double-potential-step chronocoulometry. J Electrochem Soc. 2018;165(15):J3384.

    Article  CAS  Google Scholar 

  19. Brković SM, Nikolić VM, Marčeta Kaninski MP, Pašti IA. Pt/C catalyst impregnated with tungsten-oxide—hydrogen oxidation reaction vs. CO tolerance. Int J Hydrogen Energy. 2019;44(26):13364.

    Article  Google Scholar 

  20. Cui Y, Tan X, Xiao K, Zhao S, Bedford N, Liu Y, Wang Z, Wu K, Pan J, Saputera W, Cheong S, Tilley R, Smith S, Yun J, Dai L, Amal R, Wang D. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020;5(11):3560.

    Article  CAS  Google Scholar 

  21. Mo Y, Feng S, Yu T, Chen J, Qian G, Luo L, Yin S. Surface unsaturated WOx activating PtNi alloy nanowires for oxygen reduction reaction. J Colloid Interface Sci. 2022;607:1928.

    Article  CAS  PubMed  Google Scholar 

  22. Tu W, Chen K, Zhu L, Zai H, E B, Ke X, Chen C, Sui M, Chen Q, Li Y. Tungsten-doping-induced surface reconstruction of porous ternary Pt-based alloy electrocatalyst for oxygen reduction. Adv Funct Mater. 2019;29(7):1807070.

  23. Tu W, Luo W, Chen C, Chen K, Zhu E, Zhao Z, Wang Z, Hu T, Zai H, Ke X, Sui M, Chen P, Zhang Q, Chen Q, Li Y, Huang Y. Tungsten as “adhesive” in Pt2CuW0. 25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv Funct Mater. 2020;30(6):1908230.

  24. Zhang J, Fang J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J Am Chem Soc. 2009;131(51):18543.

    Article  CAS  PubMed  Google Scholar 

  25. Pham HQ, Huynh TT. Platinum–copper bimetallic nanodendritic electrocatalyst on a TiO2-based support for methanol oxidation in alkaline fuel cells. ACS Appl Nano Mater. 2021;4(5):4983.

    Article  CAS  Google Scholar 

  26. Cui SK, Guo DJ. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction. J Alloys Compd. 2021;874:159869.

    Article  CAS  Google Scholar 

  27. Bao M, Amiinu IS, Peng T, Li W, Liu S, Wang Z, Pu Z, He D, Xiong Y, Mu S. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 2018;3(4):940.

    Article  CAS  Google Scholar 

  28. Xu F, Cai S, Lin B, Yang L, Le H, Mu S. Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small. 2022;18(17):2107387.

    Article  CAS  Google Scholar 

  29. Li W, Hu ZY, Zhang Z, Wei P, Zhang J, Pu Z, Zhu J, He D, Mu S, Van Tendeloo G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J Catal. 2019;375:164.

    Article  CAS  Google Scholar 

  30. Tuo Y, Lu Q, Chen C, Liu T, Pan Y, Zhou Y, Zhang J. The facile synthesis of core–shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Adv. 2019;11(42):26326.

    Article  Google Scholar 

  31. Garcia-Cardona J, Alcaide F, Brillas E, Sirés I, Cabot PL. Testing PtCu nanoparticles supported on highly ordered mesoporous carbons CMK3 and CMK8 as catalysts for low-temperature fuel cells. Catalysts. 2021;11(6):724.

    Article  CAS  Google Scholar 

  32. Barim SB, Bozbag SE, Deljoo B, Aindow M, Erkey C. Highly active carbon supported PtCu electrocatalysts for PEMFCs by in situ supercritical deposition coupled with electrochemical dealloying. Fuel Cells. 2020;20(3):285.

    Article  CAS  Google Scholar 

  33. Castagna RM, Sieben JM, Alvarez AE, Duarte MME. Electrooxidation of ethanol and glycerol on carbon supported PtCu nanoparticles. Int J Hydrogen Energy. 2019;44(12):5970.

    Article  CAS  Google Scholar 

  34. Liu Y, Shrestha S, Mustain WE. Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media. ACS Catal. 2012;2(3):456.

    Article  CAS  Google Scholar 

  35. Yan NF, Cui HM, Shi JS, You SY, Liu S. Recent progress of W18O49 nanowires for energy conversion and storage. Tungsten. https://doi.org/10.1007/s42864-023-00202-8.

  36. Sermon PA, Bond GC. Studies of hydrogen spillover. Part 1—Study of the rate, extent and products of hydrogen spillover from platinum to the trioxides of tungsten and molybdenum. J Chem Soc Faraday Trans 1. 1976;72:730.

    Article  CAS  Google Scholar 

  37. Wang D, Li H, Du N, Hou W. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Adv Funct Mater. 2021;31(23):2009770.

    Article  CAS  Google Scholar 

  38. Huang YJ, Dai HH, Li WS, Li GL, Shu D, Chen HY. Electrodeposition preparation of Pt–HxWO3 composite and its catalytic activity toward oxygen reduction reaction. J Power Sources. 2008;184(2):348.

    Article  CAS  Google Scholar 

  39. Kumar S, Bhange SN, Soni R, Kurungot S. WO3 nanorods bearing interconnected Pt nanoparticle units as an activity-modulated and corrosion-resistant carbon-free system for polymer electrolyte membrane fuel cells. ACS Appl Energy Mater. 2020;3(2):1908.

    Article  CAS  Google Scholar 

  40. Kim GY, Yoon KR, Shin K, Jung JW, Henkelman G, Ryu WH. Black tungsten oxide nanofiber as a robust support for metal catalysts: high catalyst loading for electrochemical oxygen reduction. Small. 2021;17(47):2103755.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jing Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1012 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HZ., Li, D., Chen, Y. et al. Constructing inter-diffusive PtCuNi/WO3 interface to enhance the catalytic activity and stability in oxygen reduction. Tungsten 6, 293–303 (2024). https://doi.org/10.1007/s42864-023-00226-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00226-0

Keywords

Navigation