Skip to main content

Advertisement

Log in

NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The application of all-solid-state Li-metal batteries with solid oxide electrolytes is hindered by interfacial issues, especially the solid electrolyte/Li-metal interface. This work introduced a uniform indium film layer on the surface of Na+ super ionic conductor (NASICON) solid electrolyte Li1.5Al0.5Ge1.5P3O12 (LAGP), which promotes the intimate contact between Li metal and solid electrolyte and hinders the side reactions at the interface. Electrochemical impedance spectra show that the battery with coated solid electrolyte presents a smaller interfacial resistance and maintains stability after a long cycling time. By contrast, the baseline battery with a pure LAGP pellet shows a contact loss after cycling with the vibration of interfacial impedance. The Li symmetric cells with indium-modified solid electrolyte present stable cycling behavior over 400 h at 0.1 and 0.2 mA·cm−2. The all-solid-state Li-metal batteries with a Li anode, indium coating LAGP and two kinds of cathodes, namely carbon nanotubes (CNTs) and LiNi0.8Co0.1Mn0.1O2 (NCM811), are prepared and tested. The CNTs cathode for Li–O2 and Li–air batteries has a higher specific capacity than traditional Li-ion battery cathodes. The Li-NCM811 batteries deliver an initial Coulombic efficiency of about 75%, with 82% capacity retention after 20 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Y, He P, Zhou H. Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv Energy Mater. 2018;8(4):1701602.

    Article  Google Scholar 

  2. Yu Z, Zhang X, Fu C, Wang H, Chen M, Yin G, Huo H, Wang J. Dendrites in solid-state batteries: ion transport behavior, advanced characterization, and interface regulation. Adv Energy Mater. 2021;11(18):2003250.

    Article  CAS  Google Scholar 

  3. Zhou L, Minafra N, Zeier WG, Nazar LF. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc Chem Res. 2021;54(12):2717.

    Article  CAS  Google Scholar 

  4. Krauskopf T, Richter FH, Zeier WG, Janek J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem Rev. 2020;120(15):7745.

    Article  CAS  Google Scholar 

  5. Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev. 2020;120(14):6820.

    Article  CAS  Google Scholar 

  6. Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W. Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv Energy Mater. 2019;10(4):1903311.

    Article  Google Scholar 

  7. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.

    Article  CAS  Google Scholar 

  8. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics. 2015;278:98.

    Article  CAS  Google Scholar 

  9. Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics. 2018;318:102.

    Article  CAS  Google Scholar 

  10. Ahmad Z, Viswanathan V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys Rev Lett. 2017;119(5): 056003.

    Article  Google Scholar 

  11. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016;138(30):9385.

    Article  CAS  Google Scholar 

  12. Hao Y, Wang S, Xu F, Liu Y, Feng N, He P, Zhou H. A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects. ACS Appl Mater Interfaces. 2017;9(39):33735.

    Article  CAS  Google Scholar 

  13. Liu Y, Li C, Li B, Song H, Cheng Z, Chen M, He P, Zhou H. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv Energy Mater. 2018;8(16):1702374.

    Article  Google Scholar 

  14. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572.

    Article  CAS  Google Scholar 

  15. Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough JB. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed Engl. 2017;56(3):753.

    Article  CAS  Google Scholar 

  16. Han SY, Lewis JA, Shetty PP, Tippens J, Yeh D, Marchese TS, McDowell MT. Porous metals from chemical dealloying for solid-state battery anodes. Chem Mater. 2020;32(6):2461.

    Article  CAS  Google Scholar 

  17. Yang C, Xie H, Ping W, Fu K, Liu B, Rao J, Dai J, Wang C, Pastel G, Hu L. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater. 2019;31(3):e1804815.

    Article  Google Scholar 

  18. Huang Y, Shao B, Han F. Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J Mater Chem A. 2022;10(23):12350.

    Article  CAS  Google Scholar 

  19. Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y, Wachsman ED, Hu L. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138(37):12258.

    Article  CAS  Google Scholar 

  20. Du Y, Liu Y, Yang S, Li C, Cheng Z, Qiu F, He P, Zhou H. A rechargeable all-solid-state Li–CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst. J Mater Chem A. 2021;9(15):9581.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jie Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Former article version (DOCX 919 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Fang, RY. & Mitlin, D. NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries. Tungsten 4, 316–322 (2022). https://doi.org/10.1007/s42864-022-00183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00183-0

Keywords

Navigation