Skip to main content
Log in

In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2021

This article has been updated

Abstract

Dislocation loop and gas bubble evolution in tungsten were in-situ investigated under 30 keV H2+ and He+ dual-beam irradiation at 973 K and 1173 K. The average size and number density of dislocation loops and gas bubbles were obtained as a function of irradiation dose. The quantitative calculation and analysis of the migration distance of 1/2 \(\langle{111}\rangle\) loops at low irradiation dose indicated that the main mechanism of the formation of \(\langle{100}\rangle\) loops should be attributed to the high-density helium cluster inducement mechanism, instead of the 1/2 \(\langle{111}\rangle\) loop reaction mechanism. H2+ and He+ dual-beam irradiation induced the formation of \(\langle{100}\rangle\) loops and 1/2 \(\langle{111}\rangle\) loops, while increasing the irradiation temperature would increase \(\langle{100}\rangle\) loop percentage. The percentage of \(\langle{100}\rangle\) loops was approximately 18.6% at 973 K and increased to 22.9% at 1173 K. The loop reaction between two 1/2 \(\langle{111}\rangle\) loops to form a large-sized 1/2 \(\langle{111}\rangle\) loop was in-situ observed, which induced not only the decrease of the number of 1/2 \(\langle{111}\rangle\) loops but also the significant increase of their sizes. The \(\langle{100}\rangle\) loops impeded the movement of dislocation line and tended to escape from it instead of being absorbed. With the increase of irradiation dose, the yield strength increment (\(\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}\)) caused by the change of loop size and density increased first and then decreased slightly, while the yield strength increment (\(\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}\)) caused by the change of bubble size and density always increased. Meanwhile, within the current irradiation dose range, \(\Delta {\sigma }_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}}\) was much larger than \(\Delta {\sigma }_{\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Yi X, Jenkins ML, Hattar K, Edmondson PD, Roberts SG. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations. Acta Mater. 2015;92:163.

    Article  CAS  Google Scholar 

  2. Ran G, Huang SL, Huang ZJ, Yan QZ, Xu JK, Li N, Wang LM. In-situ observation of microstructure evolution in tungsten under 400 keV Kr+ irradiation. J Nucl Mater. 2014;455:320.

    Article  CAS  Google Scholar 

  3. Das S. Recent advances in characterising irradiation damage in tungsten for fusion power. SN Appl Sci. 2019;1:1.

    Article  CAS  Google Scholar 

  4. Chen Y, Li YH, Gao N, Zhou HB, Hu W, Lu GH, Gao F, Deng H. New interatomic potentials of W, Re and W-Re alloy for radiation defects. J Nucl Mater. 2018;502:141.

    Article  CAS  Google Scholar 

  5. Fukuda M, Yabuuchi K, Nogami S, Hasegawa A, Tanaka T. Microstructural development of tungsten and tungsten rhenium alloys due to neutron irradiation in HFIR. J Nucl Mater. 2014;455:460.

    Article  CAS  Google Scholar 

  6. Ueda Y, Coenen JW, De Temmerman G, Doerner RP, Linke J, Philipps V, Tsitrone E. Research status and issues of tungsten plasma facing materials for ITER and beyond. Fusion Eng Des. 2014;89:901.

    Article  CAS  Google Scholar 

  7. Li Y, Wang L, Ran G, Yuan Y, Wu L, Liu X, Qiu X, Sun Z, Ding Y, Han Q, Wu X, Deng H, Huang X. In-situ TEM investigation of 30 keV He+ irradiated tungsten: effects of temperature, fluence, and sample thickness on dislocation loop evolution. Acta Mater. 2021;206:116618.

    Article  CAS  Google Scholar 

  8. Ferroni F, Yi X, Arakawa K, Fitzgerald SP, Edmondson PD, Roberts SG. High temperature annealing of ion irradiated tungsten. Acta Mater. 2015;90:380.

    Article  CAS  Google Scholar 

  9. Fikar J, Gröger R, Schäublin R. Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2017;393:186.

    Article  CAS  Google Scholar 

  10. Wang SW, Guo WG, Yuan Y, Gao N, Zhu XL, Cheng L, Cao XZ, Fu EG, Shi LQ, Gao F, Lu GH. Evolution of vacancy defects in heavy ion irradiated tungsten exposed to helium plasma. J Nucl Mater. 2020;532:152051.

    Article  CAS  Google Scholar 

  11. Hu W, Luo F, Shen Z, Guo L, Zheng Z, Wen Y, Ren Y. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions. Fusion Eng Des. 2015;90:23.

    Article  CAS  Google Scholar 

  12. Yi XO, Jenkins ML, Kirk MA, Zhou ZF, Roberts SG. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: damage production and microstructural evolution. Acta Mater. 2016;112:105.

    Article  CAS  Google Scholar 

  13. Harrison RW, Hinks JA, Donnelly SE. Influence of pre-implanted helium on dislocation loop type in tungsten under self-ion irradiation. Scr Mater. 2018;150:61.

    Article  CAS  Google Scholar 

  14. El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang Y, Martinez E, Maloy S. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: microstructure, effect of dpa rate, temperature, and grain size. Acta Mater. 2018;149:206.

    Article  CAS  Google Scholar 

  15. Zheng RY, Han WZ. Comparative study of radiation defects in ion irradiated bulk and thin-foil tungsten. Acta Mater. 2020;186:162.

    Article  CAS  Google Scholar 

  16. Luo FF, Wang JW, Guo LP, Zhang LW, Shen ZY, Zhang WP. Effect of He ion irradiation on the microstructure of tungsten at high temperature. Univ Nat Sci Ed. 2017;8:349.

    Google Scholar 

  17. Zhang ZX, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures. J Nucl Mater. 2016;480:207.

    Article  CAS  Google Scholar 

  18. El-Atwani O, Cunningham WS, Trelewicz JR, Li M, Wirth BD, Maloy SA. Revealing the synergistic effects of sequential and simultaneous dual beam irradiations in tungsten via in-situ TEM. J Nucl Mater. 2020;538:152150.

    Article  CAS  Google Scholar 

  19. Yi X, Arakawa K, Ferroni F, Jenkins ML, Han W, Liu P, Wan F. High-temperature damage evolution in 10 keV He+ irradiated W and W-5Re. Mater Charact. 2018;145:77.

    Article  CAS  Google Scholar 

  20. Harrison RW, Amari H, Greaves G, Hinks JA, Donnelly SE. Effect of He-appm/dpa ratio on the damage microstructure of tungsten. MRS Adv. 2016;1(42):2893.

    Article  CAS  Google Scholar 

  21. Sandoval L, Perez D, Uberuaga BP, Voter AF. Formation of helium-bubble networks in tungsten. Acta Mater. 2018;159:46.

    Article  CAS  Google Scholar 

  22. El-Atwani O, Hattar K, Hinks JA, Greaves G, Harilal SS, Hassanein A. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. J Nucl Mater. 2015;458:216.

    Article  CAS  Google Scholar 

  23. Harrison RW, Greaves G, Hinks JA, Donnelly SE. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten. J Nucl Mater. 2017;495:492.

    Article  CAS  Google Scholar 

  24. You YW, Sun JJ, Kong XS, Wu XB, Xu YC, Wang XP, Fang QF, Liu CS. Effects of self-interstitial atom on behaviors of hydrogen and helium in tungsten. Phys Scr. 2020;95:075708.

    Article  CAS  Google Scholar 

  25. Wang L, Hao T, Zhao BL, Zhang T, Fang QF, Liu CS, Wang XP, Cao L. Evolution behavior of helium bubbles and thermal desorption study in helium-charged tungsten film. J Nucl Mater. 2018;508:107.

    Article  CAS  Google Scholar 

  26. Li XC, Shu XL, Liu YN, Yu Y, Gao F, Lu GH. Analytical W-He and H–He interatomic potentials for a W–H–He system. J Nucl Mater. 2012;426(1–3):31.

    Article  CAS  Google Scholar 

  27. Juslin N, Wirth BD. Molecular dynamics simulation of the effect of sub-surface helium bubbles on hydrogen retention in tungsten. J Nucl Mater. 2013;438:S1221.

    Article  CAS  Google Scholar 

  28. Zhou Q, Azuma K, Togari A, Yajima M, Tokitani M, Masuzaki S. Helium retention behavior in simultaneously He+ -H2 +, irradiated tungsten. J Nucl Mater. 2018;502:289.

    Article  CAS  Google Scholar 

  29. Luo F, Guo L, Lu D, Wang J, Zheng Z, Zhang W. TEM observation of bubbles induced by single and sequential He/H irradiation in tungsten. Fusion Eng Des. 2017;125:463.

    Article  CAS  Google Scholar 

  30. Lee HT, Haasz AA, Davis JW, Macaulay-Newcombe RG. Hydrogen and helium trapping in tungsten under single and sequential irradiations. J Nucl Mater. 2007;360(2):196.

    Article  CAS  Google Scholar 

  31. Alexander R, Marinica MC, Proville L, Willaime F, Arakawa K, Gilbert MR, Dudarev SL. Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium. Phys Rev B. 2016;94:1.

    Article  CAS  Google Scholar 

  32. Field KG, Hu X, Littrell KC, Yamamoto Y, Snead LL. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys. J Nucl Mater. 2015;465:746.

    Article  CAS  Google Scholar 

  33. Marian J, Wirth BD, Perlado JM. Mechanism of formation and growth of \(\langle{100}\rangle\) interstitial loops in ferritic materials. Phys Rev Lett. 2002;88:255507.

    Article  CAS  Google Scholar 

  34. Eyre BL, Bullough R. On the formation of interstitial loops in B.C.C. metals. Philos Mag. 1965;12:31.

    Article  CAS  Google Scholar 

  35. Peng Q, Meng F, Yang Y, Lu C, Deng H, Wang L, De S, Gao F. Shockwave generates \(\langle{100}\rangle\) dislocation loops in bcc iron. Nat Commun. 2018;9:4880.

    Article  CAS  Google Scholar 

  36. Calder AF, Bacon DJ, Barashev AV, Osetsky YN. On the origin of large interstitial clusters in displacement cascades. Philos Mag. 2010;90(7–8):863.

    Article  CAS  Google Scholar 

  37. Li Y, Ran G, Guo Y, Sun Z, Liu X, Li Y, Qiu X, Xin Y. The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: in-situ TEM observation and molecular dynamics simulation. Acta Mater. 2020;201:462.

    Article  CAS  Google Scholar 

  38. Terentyev D, Grammatikopoulos P, Bacon DJ, Osetsky YN. Simulation of the interaction between an edge dislocation and a <1 0 0> interstitial dislocation loop in α-iron. Acta Mater. 2008;56:5034.

    Article  CAS  Google Scholar 

  39. Huang MJ, Li YP, Ran G, Yang ZB, Wang PH. Cr-coated Zr-4 alloy prepared by electroplating and its in-situ He+ irradiation behavior. J Nucl Mater. 2020;538:152240.

    Article  CAS  Google Scholar 

  40. Ziegler JF, Ziegler MD, Biersack JP. SRIM the stopping and range of ions in matter. Nucl Instrum Methods Phys Res B. 2010;268:1818.

    Article  CAS  Google Scholar 

  41. Heo YU. Comparative study on the specimen thickness measurement using EELS and CBED methods. Appl Microsc. 2020;50:8.

    Article  Google Scholar 

  42. Terentyev D, Bacon DJ, Osetsky YN. Reactions between a 1/2 \(\langle{111}\rangle\) screw dislocation and \(\langle{100}\rangle\) interstitial dislocation loops in alpha-iron modelled at atomic scale. Philos Mag. 2010;90:1019.

    Article  CAS  Google Scholar 

  43. Brimhall JL, Mastel B. Neutron irradiated molybdenum-relationship of microstructure to irradiation temperature. Radiat Eff. 1970;3:203.

    Article  CAS  Google Scholar 

  44. Xu H, Stoller RE, Osetsky YN, Terentyev D. Solving the puzzle of 100 interstitial loop formation in bcc iron. Phys Rev Lett. 2013;110:1.

    Article  Google Scholar 

  45. Chen J, Gao N, Jung P, Sauvage T. A new mechanism of loop formation and transformation in bcc iron without dislocation reaction. J Nucl Mater. 2013;441:216.

    Article  CAS  Google Scholar 

  46. Dudarev SL, Bullough R, Derlet PM. Effect of the α-γ phase transition on the stability of dislocation loops in bcc iron. Phys Rev Lett. 2008;100:1.

    Article  CAS  Google Scholar 

  47. Granberg F, Byggmstar J, Sand AE, Nordlund K. Cascade debris overlap mechanism of 100 dislocation loop formation in Fe and FeCr. EPL. 2017;119:1.

    Article  CAS  Google Scholar 

  48. Zhang Y, Bai XM, Tonks MR, Biner SB. Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron. Scr Mater. 2015;98:5.

    Article  CAS  Google Scholar 

  49. Du Y, Yoshida K, Shimada Y, Toyama T, Inoue K, Arakawa K, Suzudo T, Milan KJ, Gerard R, Ohnuki S, Nagai Y. In-situ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing. Materialia. 2020;12:100778.

    Article  CAS  Google Scholar 

  50. Osetsky YN, Bacon DJ, Serra A, Singh BN, Golubov SI. Stability and mobility of defect clusters and dislocation loops in metals. J Nucl Mater. 2000;276:65.

    Article  CAS  Google Scholar 

  51. Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H. Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science. 2007;318:956.

    Article  CAS  Google Scholar 

  52. Hayward E, Deo C. Synergistic effects in hydrogen–helium bubbles. J Phys Condens Matter. 2012;24:265402.

    Article  CAS  Google Scholar 

  53. Terentyev D, Osetsky YN, Bacon DJ. Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal. Scr Mater. 2010;62:697.

    Article  CAS  Google Scholar 

  54. Terentyev D, Bakaev A, Zhurkin EE. Effect of carbon decoration on the absorption of \(\langle{100}\rangle\) dislocation loops by dislocations in iron. J Phys Condens Matter. 2014;26:165402.

    Article  CAS  Google Scholar 

  55. De Backer A, Mason DR, Domain C, Nguyen-Manh D, Marinica MC, Ventelon L, Becquart CS, Dudarev SL. Multiscale modelling of the interaction of hydrogen with interstitial defects and dislocations in BCC tungsten. Nucl Fusion. 2018;58:016006.

    Article  CAS  Google Scholar 

  56. Zhu B, Huang M, Li Z. Influence of helium-decoration on the interaction between 1/2\(\langle{111}\rangle\) dislocation loop and edge dislocation in BCC iron. J Nucl Mater. 2020;528:151866.

    Article  CAS  Google Scholar 

  57. Bergner F, Gillemot F, Hernández-Mayoral M, Serrano M, Török G, Ul-bricht A, Altstadt E. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels. J Nucl Mater. 2015;461:37.

    Article  CAS  Google Scholar 

  58. Stoller RE, Zinkle SJ. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J Nucl Mater. 2000;283–287:349.

    Article  Google Scholar 

  59. Bernstein BT. Elastic properties of polycrystalline tungsten at elevated temperatures. J Appl Phys. 1962;33:2140.

    Article  Google Scholar 

  60. Zinkle SJ, Matsukawa Y. Observation and analysis of defect cluster production and interactions with dislocations. J Nucl Mater. 2004;329:88.

    Article  CAS  Google Scholar 

  61. Wang ZJ, Allen FI, Shan ZW, Hosemann P. Mechanical behavior of copper containing a gas-bubble superlattice. Acta Mater. 2016;121:78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 11975191, U1832112, and U1967211).

Author information

Authors and Affiliations

Authors

Contributions

Guang Ran conceived and designed the experiments and thesis. Yi-Peng Li performed in-situ irradiation experiments. Yi-Fan Ding prepared TEM samples. Xiu-Yin Huang and Qing Han operated 50 kV hydrogen/helium coaxial ion source. Yi-Fan Ding, Yi-Peng Li and Xin-Yi Liu analyzed the experimental data and wrote the manuscript under the supervision of Guang Ran. All authors contributed to the scientific discussion of the results and reviewed the manuscript.

Corresponding author

Correspondence to Guang Ran.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to an unfortunate oversight the Conflict of Interest section has been omitted on this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YF., Li, YP., Liu, XY. et al. In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation. Tungsten 3, 434–447 (2021). https://doi.org/10.1007/s42864-021-00104-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00104-7

Keywords

Navigation