Skip to main content
Log in

Isolated Orthogonal Magnetic Energy Harvesting System Around High Voltage Transmission Lines

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

It is practically challenging for the output power in the magnetic field energy harvesting systems around high-voltage transmission lines. Consequently, a system of isolated orthogonal magnetic energy harvesting is proposed, which is consisted of two mutually orthogonal magnetic field energy harvesting modules and subsequent rectification circuits. According to the magnetic field distribution around the power transmission lines based on the catenary model at an existing 500 kV double circuit transmission tower, an H-type magnetic field energy harvesting module is designed based on the isolated magnetic field energy harvesting principle. Through two H-type magnetic energy harvesters, the energy is harvested and converted into voltage. The corresponding voltage is connected in series to power the load after being rectified respectively by the Cockcroft–Walton voltage multiplier circuit. Compared with the existing harvesting modules, the output power of the H-type magnetic field energy harvesting module is significantly improved in the condition of the same external magnetic flux density. The system proposed is modeled and analyzed, then a prototype was designed. The experimental results show that the DC output power of the system can reach up to 13 mW in an environment with an external magnetic flux density of 18 μT. And the correctness and feasibility of the system of isolated orthogonal magnetic field energy harvesting are verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Wang C, Song Y (2015) Regional distribution and transmission status of China’s electric power resources supply and demand. Power Grid Clean Energy 31(01):69–74. https://doi.org/10.3969/j.issn.1674-3814.2015.01.012

    Article  Google Scholar 

  2. Xu Q, Huang H, Zhang X et al (2021) Online fault diagnosis method for infrared image feature analysis of high-voltage lead connectors based on improved R-FCN. Electrical Technol 36(07):1380–1388. https://doi.org/10.19595/j.cnki.1000-6753.tces.201136

  3. Cai G, Yang Z, Zheng P (2022) Design of inspection robot system for large span transmission line. Electr Technol 23(04):76–81. https://doi.org/10.3969/j.issn.1673-3800.2022.04.013

    Article  Google Scholar 

  4. Gao S, Ji S, Meng L et al (2022) Operation state evaluation method of high-voltage shunt reactor based on on-line monitoring system and vibro-acoustic characteristic prediction model. Trans China Electrotechnical Soc 37(09):2179–2189. https://doi.org/10.19595/j.cnki.1000-6753.tces.210834

  5. Liang R, Zhao G, Wang C et al (2013) Study of feeders online insulation monitoring in distribution power network. Trans China Electrotechn Soc 28(S2):331–336. https://doi.org/10.19595/j.cnki.1000-6753.tces.2013.s2.062

  6. Shen M, Yin Y, Wu J et al (2014) Experimental investigating on on-Line monitoring of winding deformation of power transformers. Trans China Electrotechn Soc 29(11):184–190. https://doi.org/10.3969/j.issn.1000-6753.2014.11.023

    Article  ADS  Google Scholar 

  7. Zhao Z, Wang X (2015) Current situation and development trend of electromagnetic energy harvesting technology. J Electrotech Technol 30(13):1–11. https://doi.org/10.3969/j.issn.1000-6753.2015.13.001

    Article  Google Scholar 

  8. Ku M, Li W, Chen Y et al (2016) Advances in energy harvesting communications: past, present, and future challenges. IEEE Commun Surv Tutorials 18(2):1384–1412. https://doi.org/10.1109/COMST.2015.2497324

    Article  Google Scholar 

  9. Guruacharya S, Hossain E (2018) Self-sustainability of energy harvesting systems: concept, analysis, and design. IEEE Trans Green Commun Netw 2(1):175–192. https://doi.org/10.1109/TGCN.2017.2773565

    Article  Google Scholar 

  10. Tedeschi P, Sciancalepore S, Di Pietro R (2020) Security in energy harvesting networks: a survey of current solutions and research challenges. IEEE Commun Surv Tutorials 22(4):2658–2693. https://doi.org/10.1109/COMST.2020.3017665

    Article  Google Scholar 

  11. Hassanalieragh M, Soyata T, Nadeau A et al (2016) UR-solarcap: an open source intelligent auto-wakeup solar energy harvesting system for supercapacitor-based energy buffering. IEEE Access 4:542–557. https://doi.org/10.1109/ACCESS.2016.2519845

    Article  Google Scholar 

  12. Jeong J, Shim M, Maeng J et al (2020) An efficiency-aware cooperative multicharger system for photovoltaic energy harvesting achieving 14% efficiency improvement. IEEE Trans Power Electron 35(3):2253–2256. https://doi.org/10.1109/TPEL.2019.2939170

    Article  ADS  Google Scholar 

  13. Zhao X, Wen Z (2013) Application of flexible beam flutter mechanism in piezoelectric micro wind energy harvester design. J Chongqing Univ 36(08):145–150. https://doi.org/10.11835/j.issn.1000-582X.2013.08.021

  14. Yang E, Wang Y, Wang J et al (2021) Wind energy harvesting based on thin-film flapping triboelectric nanogenerators. Sci China Technol Sci 51(06):684–698. https://doi.org/10.1360/SST-2020-0391

    Article  Google Scholar 

  15. Hang K, Kang S, Park K et al (2012) Electric field energy harvesting powered wireless sensors for smart grid. J Electrical Eng Techno 7(1):75–80. https://doi.org/10.5370/JEET.2012.7.1.75

    Article  Google Scholar 

  16. Zeng X, Yang Z, Wu P et al (2021) Power source based on electric field energy harvesting for monitoring devices of high-voltage transmission line. IEEE Trans Industr Electron 68(8):7083–7092. https://doi.org/10.1109/TIE.2020.3003551

    Article  Google Scholar 

  17. Zhuang Y, Xu C, Song C et al (2020) Improving current transformer-based energy extraction from AC power lines by manipulating magnetic field. IEEE Trans Industr Electron 67(11):9471–9479. https://doi.org/10.1109/TIE.2019.2952795

    Article  Google Scholar 

  18. Roscoe N, Judd M (2013) Harvesting energy from magnetic fields to power condition monitoring sensors. IEEE Sens J 13(6):2263–2270. https://doi.org/10.1109/JSEN.2013.2251625

    Article  ADS  Google Scholar 

  19. Yuan S, Huang Y, Zhou J et al (2015) Magnetic field energy harvesting under overhead power lines. IEEE Trans Power Electron 30(11):6191–6202. https://doi.org/10.1109/TPEL.2015.2436702

    Article  ADS  Google Scholar 

  20. Yuan S, Huang Y, Zhou J et al (2017) A high-efficiency helical core for magnetic field energy harvesting. IEEE Trans Power Electron 32(7):5365–5376. https://doi.org/10.1109/TPEL.2016.2610323

    Article  ADS  Google Scholar 

  21. Tashiro K, Wakiwaka H, Inoue S et al (2011) Energy harvesting of magnetic power-line noise. IEEE Trans Magn 47(10):4441–4444. https://doi.org/10.1109/TMAG.2011.2158190

    Article  ADS  Google Scholar 

  22. Hussain SA, Taher F, Alzaidi MS, Hussain I, Ghoniem RM, Sree MFA, Lalbakhsh A (2023) Wideband, high-gain, and compact four-port MIMO antenna for future 5G devices operating over Ka-band spectrum. Appl Sci 13(7):4380. https://doi.org/10.3390/app13074380

    Article  CAS  Google Scholar 

  23. Ray MK, Mandal K, Moloudian G, Lalbakhsh A (2023) Axial ratio beamwidth enhancement of a low-profile circularly polarized antenna using defected ground structures. Int J Microw Wirel Technol 15(8):1434–1442. https://doi.org/10.1017/S1759078723000168

    Article  Google Scholar 

  24. Wang M, Feng J, Shi Y et al (2019) Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer. IEEE Trans Industr Electron 66(3):1. https://doi.org/10.1109/TIE.2018.2840485

    Article  CAS  Google Scholar 

  25. Xiao D, He W, Zhang Z et al (2009) Three-dimensional optimization model of power frequency magnetic field of UHV transmission line. Chin J Electrical Eng 29(12):116–120. https://doi.org/10.3321/j.issn:0258-8013.2009.12.020

    Article  Google Scholar 

  26. Roscoe NM, Judd MD (2013) Optimization of voltage doublers for energy harvesting applications. IEEE Sens J 13(12):4904–4911. https://doi.org/10.1109/JSEN.2013.2278468

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51777210), the Natural Science Foundation of Jiangsu Province (No. BK20211246), and the Natural Science Foundation of Anhui Province (No. 2008085UD14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anran Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Sun, A., Wang, X. et al. Isolated Orthogonal Magnetic Energy Harvesting System Around High Voltage Transmission Lines. J. Electr. Eng. Technol. (2024). https://doi.org/10.1007/s42835-024-01839-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42835-024-01839-2

Keywords

Navigation