Skip to main content
Log in

Passivity-Based Design for LCL-Filtered Grid-Connected Inverters with Inverter Current Control and Capacitor-Current Active Damping

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Passivity-based design gains much popularity in grid-connected inverters (GCIs) since it enables system stability regardless of the uncertain grid impedance. This paper devotes to a systematic passivity-based design guidance for the LCL-filtered GCI with inverter current control and capacitor-current active damping. It is found that the passivity can be guaranteed with an optimal damping gain of the capacitor-current active damping, but it suffers from both the filter parameter drift and the lagging phase of the current regulator, especially at the one-sixth sampling frequency. To address this issue, a phase-lead compensation is introduced in series with the current regulator, which helps to enhance the full-band passivity and high robustness against the aforementioned challenge. Experiments are conducted to confirm the theoretical expectation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Blaabjerg F, Teodorescu R, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  2. Jo J, Cha H (2019) Design of effective passive damping resistor of grid-connected inverter with LCL for industrial applications. J Electr Eng Technol 14(5):2039–2048

    Article  Google Scholar 

  3. Enslin JHR, Heskes PJM (2004) Harmonic interaction between a large number of distributed power inverters and the distribution network. IEEE Trans Power Electron 19(6):1586–1593

    Article  ADS  Google Scholar 

  4. Buchhagen C, Rauscher C, Menze A, Jung J (2015) BorWin1—First experiences with harmonic interactions in converter dominated grids. Proc Int ETG Congr; Die Energiewende—Blueprints for the New Energy Age. Bonn, Germany, pp 1–7

    Google Scholar 

  5. Zou C, Rao H, Xu S, Li Y, Li W, Chen J, Zhao X, Lei B (2018) Analysis of resonance between a VSC-HVDC converter and the AC grid. IEEE Trans Power Electron 33(12):10157–10168

    Article  ADS  Google Scholar 

  6. Sun J (2011) Impedance-based stability criterion for grid-connected inverters. IEEE Trans Power Electron 26(11):3075–3078

    Article  ADS  Google Scholar 

  7. Agorreta J, Borrega M, Lopez J, Marroyo L (2011) Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans Power Electron 26(3):770–785

    Article  ADS  Google Scholar 

  8. Wang X, Blaabjerg F, Loh PC (2017) Passivity-based stability analysis and damping injection for multi paralleled VSCs with LCL filters. IEEE Trans Power Electron 32(11):8922–8935

    Article  ADS  Google Scholar 

  9. Chen H, Cheng P, Wang X, Blaabjerg F (2018) A passivity-based stability analysis of the active damping technique in the offshore wind farm applications. IEEE Trans Ind Appl 54(5):5074–5082

    Article  Google Scholar 

  10. Lu M, Al-Durra A, Muyeen SM, Leng S, Loh PC, Blaabjerg F (2018) Benchmarking of stability and robustness against grid impedance variation for LCL-filtered grid-interfacing inverters. IEEE Trans Power Electron 33(10):9033–9046

    Article  ADS  Google Scholar 

  11. Parker SG, McGrath BP, Holmes DG (2014) Regions of active damping control for LCL filters. IEEE Trans Ind Appl 50(1):424–432

    Article  Google Scholar 

  12. Yao W, Yang Y, Xu Y, Blaabjerg F, Liu S, Wilson G (2020) Phase reshaping via all-pass filters for robust LCL-filter active damping. IEEE Trans Power Electron 35(3):3114–3126

    Article  ADS  Google Scholar 

  13. Dannehl J, Fuchs FW, Hansen S, Thøgersen PB (2010) Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans Ind Appl 46(4):1509–1517

    Article  Google Scholar 

  14. Liu J, Zhou L, Molinas M (2018) Damping region extension for digitally controlled LCL-filtered grid-connected inverter with capacitor-current feedback. IET Power Electron 11(12):1974–1982

    Article  Google Scholar 

  15. Yuan C, Shi D, Hu Q, Liao Y, Yu J, Zhou P (2021) Active damping resonance suppression and optimization of photovoltaic cluster grid connected system. J Electr Eng Technol 16(1):2509–2521

    Article  Google Scholar 

  16. Wang X, Bao C, Ruan X, Li W, Pan D (2014) Design considerations of digitally controlled LCL-filtered inverter with capacitor-current-feedback active damping. IEEE Trans Emerg Sel Topics Power Electron 2(4):972–984

    Article  Google Scholar 

  17. Pan D, Ruan X, Bao C, Li W, Wang X (2015) Optimized controller design for LCL-filtered grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans Ind Electron 62(3):1537–1547

    Article  ADS  Google Scholar 

  18. Li X, Wu X, Geng Y, Yuan X, Xia C, Zhang X (2015) Wide damping region for LCL-filtered grid-connected inverter with an improved capacitor-current-feedback method. IEEE Trans Power Electron 30(9):5247–5259

    Article  ADS  Google Scholar 

  19. Ben Saïd-Romdhane M, Naouar MW, Slama-Belkhodja I, Monmasson E (2017) Robust active damping methods for LCL filter-based grid-connected converters. IEEE Trans Power Electron 32(9):6739–6750

    Article  ADS  Google Scholar 

  20. Harnefors L, Wang X, Yepes AG, Blaabjerg F (2016) Passivity-based stability assessment of grid-connected VSCs—an overview. IEEE J Emerg Sel Topics Power Electron 4(1):116–125

    Article  Google Scholar 

  21. Harnefors L, Finger R, Wang X, Bai H, Blaabjerg F (2017) VSC input- admittance modeling and analysis above the Nyquist frequency for passivity-based stability assessment. IEEE Trans Ind Electron 64(8):6362–6370

    Article  Google Scholar 

  22. Wang X, Blaabjerg F (2019) Harmonic stability in power electronic-based power systems: concept, modeling, and analysis. IEEE Trans Smart Grid 10(3):2858–2870

    Article  Google Scholar 

  23. Yang D, Ruan X, Wu H (2014) Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition. IEEE Trans Power Electron 29(11):5795–5805

    Article  ADS  Google Scholar 

  24. Yang Z, Shah C, Chen T, Teichrib J, De Doncker RW (2021) Virtual damping control design of three-phase grid-tied PV inverters for passivity enhancement. IEEE Trans Power Electron 36(6):6251–6264

    Article  ADS  Google Scholar 

  25. Wu H, Wang X (2020) Virtual-flux-based passivation of current control for grid-connected VSCs. IEEE Trans Power Electron 35(12):12673–12677

    Article  ADS  Google Scholar 

  26. Brune O (1931) Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency. J Math Phy 10:191–236

    Article  Google Scholar 

  27. Harnefors L, Yepes AG, Vidal A, Doval-Gandoy J (2015) Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability. IEEE Trans Ind Electron 62(2):702–710

    Article  Google Scholar 

  28. Xie C, Li K, Zou J, Guerrero JM (2020) Passivity-based stabilization of LCL-filtered grid-connected inverters via a general admittance model. IEEE Trans Power Electron 35(6):6636–6648

    Article  ADS  Google Scholar 

  29. Akhavan A, Mohammadi HR, Vasquez JC, Guerrero JM (2020) Passivity-based design of plug-and-play current-controlled grid-connected inverters. IEEE Trans Power Electron 35(2):2135–2150

    Article  ADS  Google Scholar 

  30. Zhao J, Li K, Wang X, Xie C, Xu H (2021) A novel passivity-based resonant instability suppression method for grid-connected VSC. J Electr Eng Technol 16(1):321–331

    Article  Google Scholar 

  31. Rodriguez-Diaz E, Freijedo FD, Guerrero JM, Marrero-Sosa J, Dujic D (2019) Input-admittance passivity compliance for grid-connected converters with an LCL filter. IEEE Trans Ind Electron 66(2):1089–1097

    Article  Google Scholar 

  32. Goodwin GC, Graebe SF, Salgado ME (2000) Control System Design. Prentice-Hall, Upper Saddle River, NJ, USA

    Google Scholar 

Download references

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 51507120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Yi, H., Xu, J. et al. Passivity-Based Design for LCL-Filtered Grid-Connected Inverters with Inverter Current Control and Capacitor-Current Active Damping. J. Electr. Eng. Technol. 19, 1541–1549 (2024). https://doi.org/10.1007/s42835-023-01659-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01659-w

Keywords

Navigation