Skip to main content
Log in

Porous heterostructure of h-BN/carbon as an efficient electrocatalyst for hydrogen peroxide generation

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We successfully synthesized a porous carbon material with abundant hexagonal boron nitride (h-BN) dispersed on a carbon matrix (p-BN-C) as efficient electrocatalysts for two-electron oxygen reduction reaction (2e ORR) to produce hydrogen peroxide (H2O2). This catalyst was fabricated via ball-milling-assisted h-BN exfoliation and subsequent growth of carbon structure. In alkaline solutions, the h-BN/carbon heterostructure exhibited superior electrocatalytic activity for H2O2 generation measured by a rotating ring-disk electrode (RRDE), with a remarkable selectivity of up to 90–97% in the potential range of 0.3–0.6 V vs reversible hydrogen electrode (RHE), superior to most of the reported carbon-based electrocatalysts. Density functional theory (DFT) simulations indicated that the B atoms at the h-BN heterostructure interface were crucial active sites. These results underscore the remarkable catalytic activity of heterostructure and provide a novel approach for tailoring carbon-based catalysts, enhancing the selectivity and activity in the production of H2O2 through heterostructure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available upon request from the corresponding author, upon reasonable request.

References

  1. Sun Y, Han L, Strasser P (2020) A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 49:6605–6631. https://doi.org/10.1039/d0cs00458h

    Article  CAS  PubMed  Google Scholar 

  2. Shi X, Back S, Gill TM, Siahrostami S, Zheng X (2021) Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7:38–63. https://doi.org/10.1016/j.chempr.2020.09.013

    Article  CAS  Google Scholar 

  3. Campos-Martin JM, Blanco-Brieva G, Fierro JL (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45:6962–6984. https://doi.org/10.1002/anie.200503779

    Article  CAS  Google Scholar 

  4. Xu S, Lu R, Sun K, Tang J, Cen Y, Luo L, Wang Z, Tian S, Sun X (2022) Synergistic effects in N, O-comodified carbon nanotubes boost highly selective electrochemical oxygen reduction to H2O2. Adv Sci 9:e2201421. https://doi.org/10.1002/advs.202201421

    Article  CAS  Google Scholar 

  5. Zhou Y, Chen G, Zhang J (2020) A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J Mater Chem A 8:20849–20869. https://doi.org/10.1039/d0ta07900f

    Article  CAS  Google Scholar 

  6. Pizzutilo E, Kasian O, Choi CH, Cherevko S, Hutchings GJ, Mayrhofer KJJ, Freakley SJ (2017) Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production. Chem Phys Lett 683:436–442. https://doi.org/10.1016/j.cplett.2017.01.071

    Article  CAS  Google Scholar 

  7. Slanac DA, Hardin WG, Johnston KP, Stevenson KJ (2012) Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc 134:9812–9819. https://doi.org/10.1021/ja303580b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IE, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12:1137–1143. https://doi.org/10.1038/nmat3795

    Article  CAS  PubMed  Google Scholar 

  9. Sheng H, Hermes ED, Yang X, Ying D, Janes AN, Li W, Schmidt JR, Jin S (2019) Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal 9:8433–8442. https://doi.org/10.1021/acscatal.9b02546

    Article  CAS  Google Scholar 

  10. Zhang L, Ren Y, Liu W, Wang A, Zhang T (2018) Single-atom catalyst: a rising star for green synthesis of fine chemicals. Nat Sci Rev 5:653–672. https://doi.org/10.1093/nsr/nwy077

    Article  CAS  Google Scholar 

  11. Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M (2024) Carbon catalysts empowering sustainable chemical synthesis via electrochemical CO2 conversion and two-electron oxygen reduction reaction. Small. https://doi.org/10.1002/smll.202311163

    Article  PubMed  Google Scholar 

  12. Zhang J-Y, Xia C, Wang H-F, Tang C (2022) Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J Energy Chem 67:432–450. https://doi.org/10.1016/j.jechem.2021.10.013

    Article  CAS  Google Scholar 

  13. Fan M, Wang Z, Sun K, Wang A, Zhao Y, Yuan Q, Wang R, Raj J, Wu J, Jiang J, Wang L (2023) N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv Mater 35:e2209086. https://doi.org/10.1002/adma.202209086

    Article  CAS  PubMed  Google Scholar 

  14. Yuan Q, Fan M, Zhao Y, Wu J, Raj J, Wang Z, Wang A, Sun H, Xu X, Wu Y, Sun K, Jiang J (2023) Facile fabrication of carbon dots containing abundant h-BN/graphite heterostructures as efficient electrocatalyst for hydrogen peroxide synthesis. Appl Catal B 324:122195. https://doi.org/10.1016/j.apcatb.2022.122195

    Article  CAS  Google Scholar 

  15. Fan M, Wu J, Yuan J, Deng L, Zhong N, He L, Cui J, Wang Z, Behera SK, Zhang C, Lai J, Jawdat BI, Vajtai R, Deb P, Huang Y, Qian J, Yang J, Tour JM, Lou J, Chu CW, Sun D, Ajayan PM (2019) Doping nanoscale graphene domains improves magnetism in hexagonal boron nitride. Adv Mater 31:e1805778. https://doi.org/10.1002/adma.201805778

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang Z-Y, Dresselhaus MS, Li L-J, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134–4139. https://doi.org/10.1021/nl1023707

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Lin Y, Duan T, Song L (2021) Interfacial engineering of heterogeneous catalysts for electrocatalysis. MaterToday 48:115–134. https://doi.org/10.1016/j.mattod.2021.02.004

    Article  CAS  Google Scholar 

  18. Zhao Y, Xu X, Yuan Q, Wu Y, Sun K, Li B, Wang Z, Wang A, Sun H, Fan M, Jiang J (2023) Interfacial engineering of a vertically stacked graphene/h-BN heterostructure as an efficient electrocatalyst for hydrogen peroxide synthesis. Mater Horiz 10:4930–4939. https://doi.org/10.1039/d3mh00545c

    Article  CAS  PubMed  Google Scholar 

  19. Fan M, Wang Z, Zhao Y, Yuan Q, Cui J, Raj J, Sun K, Wang A, Wu J, Sun H, Li B, Wang L, Jiang J (2022) Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Energy 5:e309. https://doi.org/10.1002/cey2.309

    Article  CAS  Google Scholar 

  20. Zhang T, Wang Y, Li X, Zhuang Q, Zhang Z, Zhou H, Ding Q, Wang Y, Dang Y, Duan L, Liu J (2023) Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. Chin Chem Lett 34:107596. https://doi.org/10.1016/j.cclet.2022.06.019

    Article  CAS  Google Scholar 

  21. Lei W, Portehault D, Dimova R, Antonietti M (2011) Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. J Am Chem Soc 133:7121–7127. https://doi.org/10.1021/ja200838c

    Article  CAS  PubMed  Google Scholar 

  22. Gao M, Wang Z-Y, Yuan Y-R, Li W-W, Liu H-Q, Huang T-Y (2022) Ball-milled biochar for efficient neutral electrosynthesis of hydrogen peroxide. Chem Eng J 434:134788. https://doi.org/10.1016/j.cej.2022.134788

    Article  CAS  Google Scholar 

  23. Hod O (2012) Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J Chem Theory Comput 8:1360–1369. https://doi.org/10.1021/ct200880m

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L, Wu M (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357. https://doi.org/10.1038/ncomms6357

    Article  CAS  PubMed  Google Scholar 

  25. Fukamachi S, Solís-Fernández P, Kawahara K, Tanaka D, Otake T, Lin Y-C, Suenaga K, Ago H (2023) Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat Electron 6:126–136. https://doi.org/10.1038/s41928-022-00911-x

    Article  CAS  Google Scholar 

  26. Wang S, Ye D, Liu H, Zhu X, Liu Z, Chen R, Liao Q, Yang Y (2022) Natural bamboo-derived O-doped rocky electrocatalyst for high-efficiency electrochemical reduction of O2 to H2O2. Int J Hydrogen Energy 47:5961–5973. https://doi.org/10.1016/j.ijhydene.2021.11.218

    Article  CAS  Google Scholar 

  27. Zheng R, Meng Q, Zhang H, Li T, Yang D, Zhang L, Jia X, Liu C, Zhu J, Duan X, Xiao M, Xing W (2024) Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction. J Energy Chem 90:7–15. https://doi.org/10.1016/j.jechem.2023.10.045

    Article  CAS  Google Scholar 

  28. Fan M, Jimenez JD, Shirodkar SN, Wu J, Chen S, Song L, Royko MM, Zhang J, Guo H, Cui J, Zuo K, Wang W, Zhang C, Yuan F, Vajtai R, Qian J, Yang J, Yakobson BI, Tour JM, Lauterbach J, Sun D, Ajayan PM (2019) Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catal 9:10077–10086. https://doi.org/10.1021/acscatal.9b02197

    Article  CAS  Google Scholar 

  29. Wu Y, Yuan Q, Zhao Y, Xu X, Xu J, Wang Y, Sun K, Wang A, Sun H, Li B, Xu R, Wang Z, Jiang J, Fan M (2023) Boron-sulfur pairs for highly active 2e oxygen reduction reaction to electrochemically synthesize hydrogen peroxide. ACS Sustain Chem Eng 11:13363–13373. https://doi.org/10.1021/acssuschemeng.3c02620

    Article  CAS  Google Scholar 

  30. Li Q, Liu M, Zhang Y, Liu Z (2016) Hexagonal boron nitride-graphene heterostructures: synthesis and interfacial properties. Small 12:32–50. https://doi.org/10.1002/smll.201501766

    Article  CAS  PubMed  Google Scholar 

  31. Fan M, Zhu C, Yang J, Sun D (2016) Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction. Electrochim Acta 216:102–109. https://doi.org/10.1016/j.electacta.2016.09.014

    Article  CAS  Google Scholar 

  32. Jung E, Shin H, Lee BH, Efremov V, Lee S, Lee HS, Kim J, Hooch Antink W, Park S, Lee KS, Cho SP, Yoo JS, Sung YE, Hyeon T (2020) Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat Mater 19:436–442. https://doi.org/10.1038/s41563-019-0571-5

    Article  CAS  PubMed  Google Scholar 

  33. Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1:156–162. https://doi.org/10.1038/s41929-017-0017-x

    Article  CAS  Google Scholar 

  34. Li Z, Kumar A, Liu N, Cheng M, Zhao C, Meng X, Li H, Zhang Y, Liu Z, Zhang G, Sun X (2022) Oxygenated P/N co-doped carbon for efficient 2e- oxygen reduction to H2O2. J Mater Chem A 10:14355–14363. https://doi.org/10.1039/d2ta02590f

    Article  CAS  Google Scholar 

  35. Xiang F, Zhao X, Yang J, Li N, Gong W, Liu Y, Burguete-Lopez A, Li Y, Niu X, Fratalocchi A (2022) Enhanced selectivity in the electroproduction of H2O2 via F/S dual-doping in metal-free nanofibers. Adv Mater 35:2207533. https://doi.org/10.1002/adma.202208533

    Article  CAS  Google Scholar 

  36. Fan M, Xu J, Wang Y, Yuan Q, Zhao Y, Wang Z, Jiang J (2022) CO2 laser-induced graphene with an appropriate oxygen species as an efficient electrocatalyst for hydrogen peroxide synthesis. Chemistry 28:e202201996. https://doi.org/10.1002/chem.202201996

    Article  CAS  PubMed  Google Scholar 

  37. Deng Z, Gong M, Gong Z, Wang X (2022) Mesoscale mass transport enhancement on well-defined porous carbon platform for electrochemical H2O2 synthesis. Nano Lett 22:9551–9558. https://doi.org/10.1021/acs.nanolett.2c03696

    Article  CAS  PubMed  Google Scholar 

  38. Liu L, Kang L, Chutia A, Feng J, Michalska M, Ferrer P, Grinter DC, Held G, Tan Y, Zhao F, Guo F, Hopkinson DG, Allen CS, Hou Y, Gu J, Papakonstantinou I, Shearing PR, Brett DJL, Parkin IP, He G (2023) Spectroscopic identification of active sites of oxygen-doped carbon for selective oxygen reduction to hydrogen peroxide. Angew Chem Int Ed 62:e202303525. https://doi.org/10.1002/anie.202303525

    Article  CAS  Google Scholar 

  39. Fan M, Yuan Q, Zhao Y, Wang Z, Wang A, Liu Y, Sun K, Wu J, Wang L, Jiang J (2022) A facile, “double-catalysts” approach to directionally fabricate pyridinic N‧B-pair-doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient oxygen reduction reaction. Adv Mater 34:2107040. https://doi.org/10.1002/adma.202107040

    Article  CAS  Google Scholar 

  40. Ding G, Li C, Liu W, Zhao X, Jiang Y, Lu Y (2022) Enhanced H2O2 electrosynthesis on kneading oxidized carbon nanotubes. Appl Surf Sci 580:152293. https://doi.org/10.1016/j.apsusc.2021.152293

    Article  CAS  Google Scholar 

  41. Watanabe K, Taniguchi T, Niiyama T, Miya K, Taniguchi M (2009) Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat Photonics 3:591–594. https://doi.org/10.1038/nphoton.2009.167

    Article  CAS  Google Scholar 

  42. Tian Q, Jing L, Chen Y, Su P, Tang C, Wang G, Liu J (2022) Micelle-templating interfacial self-assembly of two-dimensional mesoporous nanosheets for sustainable H2O2 electrosynthesis. Sustain Mater Technol 32:e00398. https://doi.org/10.1016/j.susmat.2022.e00398

    Article  CAS  Google Scholar 

  43. Jiang K, Back S, Akey AJ, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Norskov JK, Siahrostami S, Wang H (2019) Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun 10:3997. https://doi.org/10.1038/s41467-019-11992-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35. https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  45. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Norskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. https://doi.org/10.1103/PhysRevLett.99.016105

    Article  CAS  PubMed  Google Scholar 

  46. Lee D, Gan YX, Chen X, Kysar JW (2007) Influence of ultrasonic irradiation on the microstructure of Cu/Al2O3, CeO2 nanocomposite thin films during electrocodeposition. Mater Sci Eng 447:209–216. https://doi.org/10.1016/j.msea.2006.11.009

    Article  CAS  Google Scholar 

  47. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315. https://doi.org/10.1039/c0ee00071j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “National Natural Science Foundation of China (No. 32371810), the Foundation Research Project of Jiangsu Province (BK20221338), China Postdoctoral Science Foundation (No. 2023M731702), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, merit-based funding for Nanjing innovation and technology project.

Author information

Authors and Affiliations

Authors

Contributions

XX has made significant contributions to this work. MMF designed the experiments. XX performed the major experiments and analyzed the results. QXY, YHW, and JWH carried out the electrochemical evaluations. YYZ conducted DFT calculations. XX wrote and revised the paper. MMF supervised the entire study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mengmeng Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42823_2024_718_MOESM1_ESM.docx

The experimental section. The SEM images of the p-BN-C and p-C. The HR-TEM images of the p-BN-C and pBN. The XPS data of the pBN. The collecting efficiency of H2O2. The retention rate of 26 mM H2O2 in 0.1 M KOH solution during 10 h at room temperature and out of light. The CV curves obtained for the p-BN-C, p-C, and p-B/N-C, the calculated ECSAs. Comparison of the catalytic performance between the p-BN-C and the recently reported electrocatalysts in an alkaline environment. The DFT-calculated data (DOCX 2198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhao, Y., Yuan, Q. et al. Porous heterostructure of h-BN/carbon as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00718-0

Keywords

Navigation