Skip to main content
Log in

Pt-functionalized S-doped g-C3N4 nanosheet for sensitive electrochemical determination of sulfamonomethoxine

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Sulfamonomethoxine (SMM) is widely used to inhibit Gram-positive and Gram-negative bacteria, and improper use of SMM is detrimental to human health and ecological stability. Therefore, a sensitive determination method is of great importance for monitoring SMM residues in water, meat, milk, eggs, etc. Herein, a Pt-functionalized S-doped graphitic carbon nitride (Pt/S-g-C3N4) was constructed for the electrochemical determination of SMM. The as-developed Pt3/S3-g-C3N4 sensor showed a significant SMM determination performance. The electrochemical oxidation of SMM on Pt3/S3-g-C3N4/GCE involves two electron transference and was limited by a diffusion process. The as-developed Pt3/S3-g-C3N4/GCE sensor has good linearity in a wide range of 0.1–120 μmol/L and a remarkably low limit of detection (LOD) of 0.026 μmol/L for SMM determination. In addition, the sensor has high selectivity and anti-interference properties for SMM detection. Furthermore, this Pt3/S3-g-C3N4/GCE sensor has good reproducibility and stability. Moreover, the recoveries were in the range of 89.6–112.2% for the detection of the SMM in a real sample of egg. The proposed Pt3/S3-g-C3N4/GCE sensor shows great potential for practical applications in detecting trace amounts of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dong S, Yan X, Li W, Liu Y, Han X, Liu X, Feng J, Yu C, Zhang C, Sun J (2022) Macroscopic Zn-doped α-Fe2O3/graphene aerogel mediated persulfate activation for heterogeneous catalytic degradation of sulfamonomethoxine wastewater. J Ind Eng Chem 108:254–262. https://doi.org/10.1016/j.jiec.2022.01.007

    Article  CAS  Google Scholar 

  2. Ismail TF, Nakamura A, Nakanishi K, Minami T, Murase T, Yanagi S, Itami T, Yoshida T (2012) Modified resazurin microtiter assay for in vitro and in vivo assessment of sulfamonomethoxine activity against the fish pathogen Nocardia seriolae. Fisher Sci 78:351–357. https://doi.org/10.1007/s12562-011-0450-8

    Article  CAS  Google Scholar 

  3. Lu S, Lin C, Lei K, Wang B, Xin M, Gu X, Cao Y, Liu X, Ouyang W, He M (2020) Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in eastern China. Water Res 184:116187. https://doi.org/10.1016/j.watres.2020.116187

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Yu C, Xi J, Tang S, Bao T, Zhang J (2019) A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim Acta 186:1–11. https://doi.org/10.1007/s00604-019-3513-7

    Article  CAS  Google Scholar 

  5. Iammarino M, Palermo C, Nardiello D, Muscarella M (2011) Optimization and validation of a confirmatory method for determination of ten sulfonamides in feeds by LC and UV-diode array detection. Chromatographia 73:75–82. https://doi.org/10.1007/s10337-011-1922-9

    Article  CAS  Google Scholar 

  6. Koroleva NA, Altukhova LB, Volkova NS, Prikhodkina LN, Pochueva EV (1978) Spectrophotometric determination of sulfamonomethoxine in aqueous solutions. Pharm Chem J 12:1232–1234. https://doi.org/10.1007/BF00777803

    Article  Google Scholar 

  7. Yang S, Ma S, Zhu K, Wang M, Li J, Arabi M, Liu H, Li Y, Chen L (2020) Simultaneous enrichment/determination of six sulfonamides in animal husbandry products and environmental waters by pressure-assisted electrokinetic injection coupled with capillary zone electrophoresis. J Food Compos Anal 88:103462. https://doi.org/10.1016/j.jfca.2020.103462

    Article  CAS  Google Scholar 

  8. Forti A, Scortichini G (2009) Determination of ten sulphonamides in egg by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 637:214–219. https://doi.org/10.1016/j.aca.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Xia YM, Ou X, Zhao Y, Xia M, Chen D, Gao WW (2021) Facile synthesis of reduced graphene oxide-octahedral Mn3O4 nanocomposites as a platform for the electrochemical determination of metronidazole and sulfamonomethoxine. Electroanalysis 33:1646–1656. https://doi.org/10.1002/elan.202100015

    Article  CAS  Google Scholar 

  10. Beitollahi H, Garkani-Nejad F, Tajik S, Ganjali MR (2019) Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite. Iran J Pharm Res 18:80

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kadam AN, Moniruzzaman M, Lee SW (2019) Dual functional S-doped g-C3N4 pinhole porous nanosheets for selective fluorescence sensing of Ag+ and visible-light photocatalysis of dyes. Molecules 24:450. https://doi.org/10.3390/molecules24030450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM (2020) Multimodal/multifunctional nanomaterials in (bio) electrochemistry: now and in the coming decade. Nanomaterials 10:2556. https://doi.org/10.3390/nano10122556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xavier MM, Nair PR, Mathew S (2019) Emerging trends in sensors based on carbon nitride materials. Analyst 144:1475–1491. https://doi.org/10.1039/C8AN02110D

    Article  CAS  PubMed  Google Scholar 

  14. Lu C, Chen X (2021) Nanostructure engineering of graphitic carbon nitride for electrochemical applications. ACS Nano 15:18777–18793. https://doi.org/10.1021/acsnano.1c06454

    Article  CAS  PubMed  Google Scholar 

  15. Yan P, Dong J, Mo Z, Xu L, Qian J, Xia J, Zhang J, Li H (2020) Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering. Biosens Bioelectron 148:111802. https://doi.org/10.1016/j.bios.2019.111802

    Article  CAS  PubMed  Google Scholar 

  16. Cao SH, Fan B, Feng YC, Chen H, Jiang F, Wang X (2018) Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem Eng J 353:147–156. https://doi.org/10.1016/j.cej.2018.07.116

    Article  CAS  Google Scholar 

  17. Ke L, Li P, Wu X, Jiang S, Luo M, Liu Y, Le Z, Sun C, Song S (2017) Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible light. Appl Catal B Environ 205:319–326. https://doi.org/10.1016/j.apcatb.2016.12.043

    Article  CAS  Google Scholar 

  18. Mohammad A, Khan ME, Cho MH (2020) Sulfur-doped-graphitic-carbon nitride (S-g-C3N4) for low cost electrochemical sensing of hydrazine. J Alloy Compd 816:152522. https://doi.org/10.1016/j.jallcom.2019.152522

    Article  CAS  Google Scholar 

  19. Ahmad K, Khan MQ, Alsalme A, Kim H (2022) Sulfur-doped graphitic-carbon nitride (S@g-C3N4) as bi-functional catalysts for hydrazine sensing and hydrogen production applications. Synthetic Met 288:117110. https://doi.org/10.1016/j.synthmet.2022.117100

    Article  CAS  Google Scholar 

  20. Wang J, Yu P, Kan K, Lv H, Liu Z, Sun B, Bai X, Chen J, Zhang Y, Shi K (2021) Efficient ultra-trace electrochemical detection of Cd2+, Pb2+ and Hg2+ based on hierarchical porous S-doped C3N4 tube bundles/graphene nanosheets composite. Chem Eng J 420:130317. https://doi.org/10.1016/j.cej.2021.130317

    Article  CAS  Google Scholar 

  21. Song BB, Zhen YF, Yin HY, Song XC (2019) Electrochemical sensor based on platinum nanoparticles modified graphite-like carbon nitride for detection of phenol. J Nanosci Nanotechenol 19(7):4020–4025. https://doi.org/10.1166/jnn.2019.16297

    Article  CAS  Google Scholar 

  22. Feng JY, Chen XH, Shi XL, Zheng WD, Zhang XF, Yang HP (2022) Sarcosine biosensor based on Pt/g-C3N4 nanocomposites with high electrocatalytic activity. ECS J Solid State Sci Technol 11:047001. https://doi.org/10.1149/2162-8777/ac62ec

    Article  CAS  Google Scholar 

  23. Mahmoudian M, Alias Y, Woi PM, Yousefi R, Basirun W (2020) An electrochemical sensor based on Pt/g-C3N4/polyaniline nanocomposite for detection of Hg2+. Adv Powder Technol 31:3372–3380. https://doi.org/10.1016/j.apt.2020.06.024

    Article  CAS  Google Scholar 

  24. Iqbal W, Yang B, Zhao X, Waqas M, Rauf M, Guo CQ, Zhang JL, Mao YP (2019) Gaseous bubble-assisted in-situ construction of worm-like porous g-C3N4 with superior visible light photocatalytic performance. Appl Catal A Gen 573:13–21. https://doi.org/10.1016/j.apcata.2019.01.010

    Article  CAS  Google Scholar 

  25. Wu XH, Gao DD, Wang P, Yu HG, Yu JG (2019) NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon 153:757–766. https://doi.org/10.1016/j.carbon.2019.07.083

    Article  CAS  Google Scholar 

  26. Meftahi A, Shabani-Nooshabadi M, Reisi-Vanani A (2022) AgI/g-C3N4 nanocomposite as electrode material for supercapacitors: comparative study for its efficiency in three different aqueous electrolytes. Electrochim Acta 430:141052. https://doi.org/10.1016/j.electacta.2022.141052

    Article  CAS  Google Scholar 

  27. Duan L, Li G, Zhang S, Wang H, Zhao Y, Zhang Y (2021) Preparation of S-doped g-C3N4 with C vacancies using the desulfurized waste liquid extracting salt and its application for NOx removal. Chem Eng J 411:128551. https://doi.org/10.1016/j.cej.2021.128551

    Article  CAS  Google Scholar 

  28. Zhu Y, Wang T, Xu T, Li Y, Wang C (2019) Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution. Appl Surf Sci 464:36–42. https://doi.org/10.1016/j.apsusc.2018.09.061

    Article  CAS  Google Scholar 

  29. Bhoyar T, Kim DJ, Abraham BM, Tonda S, Manwar NR, Vidyasagar D, Umare SS (2022) Tailoring photoactivity of polymeric carbon nitride via donor-π-acceptor network. Appl Catal B Environ 310:121347. https://doi.org/10.1016/j.apcatb.2022.121347

    Article  CAS  Google Scholar 

  30. Chen Y, Xu L, Dong J, Yan P, Chen F, Qian J, Li H (2021) An enhanced photoelectrochemical ofloxacin aptasensor using NiFe layered double hydroxide/graphitic carbon nitride heterojunction. Electrochim Acta 368:137595. https://doi.org/10.1016/j.electacta.2020.137595

    Article  CAS  Google Scholar 

  31. Chu K, Liu YP, Li YB, Guo YL, Tian Y (2020) Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl Mater Interfaces 12:7081–7090. https://doi.org/10.1021/acsami.9b18263

    Article  CAS  PubMed  Google Scholar 

  32. Li Z, Yao Y, Gao X, Bai H, Meng X (2021) Interfacial charge transfer and enhanced photocatalytic mechanisms for Pt nanoparticles loaded onto sulfur-doped g-C3N4 in H2 evolution. Mater Today Energy 22:100881. https://doi.org/10.1016/j.mtener.2021.100881

    Article  CAS  Google Scholar 

  33. Wang S, Liu Y, Wang J (2020) Iron and sulfur co-doped graphite carbon nitride (FeOy/Sg-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation. Chem Eng J 382:122836. https://doi.org/10.1016/j.cej.2019.122836

    Article  CAS  Google Scholar 

  34. Luo WB, Chou SL, Wang JZ, Zhai YC, Liu HK (2015) A metal-free, free-standing, macroporous graphene@g-C3N4 composite air electrode for high-energy lithium oxygen batteries. Small 11:2817–2824. https://doi.org/10.1002/smll.201403535

    Article  CAS  PubMed  Google Scholar 

  35. Padhiari S, Tripathy M, Hota G (2021) Nitrogen-doped reduced graphene oxide covalently coupled with graphitic carbon nitride/sulfur-doped graphitic carbon nitride heterojunction nanocatalysts for photoreduction and degradation of 4-nitrophenol. ACS Appl Nano Mater 4:7145–7161. https://doi.org/10.1021/acsanm.1c01126

    Article  CAS  Google Scholar 

  36. Jaysiva G, Manavalan S, Chen SM, Veerakumar P, Keerthi M, Tu HS (2020) MoN nanorod/sulfur-doped graphitic carbon nitride for electrochemical determination of chloramphenicol. ACS Sustain Chem Eng 8:11088–11098. https://doi.org/10.1021/acssuschemeng.0c00502

    Article  CAS  Google Scholar 

  37. Achadu OJ, Lioe DX, Kagawa K, Kawahito S, Park EY (2020) Fluoroimmunoassay of influenza virus using sulfur-doped graphitic carbon nitride quantum dots coupled with Ag2S nanocrystals. Microchim Acta 187:1–11. https://doi.org/10.1007/s00604-020-04433-1

    Article  CAS  Google Scholar 

  38. Kang JY, Koo WT, Jang JS, Kim DH, Jeong YJ, Kim R, Ahn J, Choi SJ, Kim ID (2021) 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sensor Actuators B Chem 331:129371. https://doi.org/10.1016/j.snb.2020.129371

    Article  CAS  Google Scholar 

  39. Sun Y, Zhang M, Zou Y, Zhang H, Zhang S (2022) Size-dependent Pt nanoparticle/carbon-catalyzed hydrogenation of 6-chloroquinoline. ACS Appl Nano Mater 5:4252–4259. https://doi.org/10.1021/acsanm.2c00197

    Article  CAS  Google Scholar 

  40. Chen F, Fan Z, Zhu Y, Sun H, Yu J, Jiang N, Zhao S, Lai G, Yu A, Lin CT (2020) β-cyclodextrin-immobilized Ni/graphene electrode for electrochemical enantiorecognition of phenylalanine. Materials 13:777. https://doi.org/10.3390/ma13030777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou J, Mao D, Li N, Jiang J (2020) Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes. Appl Surf Sci 506:144672. https://doi.org/10.1016/j.apsusc.2019.144672

    Article  CAS  Google Scholar 

  42. Ai JX, Wang X, Zhang Y, Hu HL, Zhou HH, Duan Y, Wang DX, Wang H, Du HJ, Yang Y (2022) A sensitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nanocomposite. Appl Phys A 128:831. https://doi.org/10.1007/s00339-022-05952-9

    Article  CAS  Google Scholar 

  43. Yi WW, Han CX, Li ZP, Guo YJ, Liu M, Dong C (2021) A strategy of electrochemical simultaneous detection of acetaminophen and levofloxacin in water based on g-C3N4 nanosheet-doped graphene oxide. Environ Sci Nano 8:258–268. https://doi.org/10.1039/D0EN00858C

    Article  CAS  Google Scholar 

  44. Deroco PB, Rocha-Filho RC, Fatibello-Filho O (2018) A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecyl phosphate film as electrochemical sensor. Talanta 179:115–123. https://doi.org/10.1016/j.talanta.2017.10.048

    Article  CAS  PubMed  Google Scholar 

  45. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  46. Alagarsamy S, Mariappan K, Chen SM, Sakthinathan S (2023) Hexagonally close-packed three-dimensional nano-flower entrapped on a heteroatom doped carbon sheets: a sensitive electro-catalyst to determine sulfonamide in environmental samples. Food chem 429:136826. https://doi.org/10.1016/j.foodchem.2023.136826

    Article  CAS  PubMed  Google Scholar 

  47. Feizollahi A, Rafati AA, Assaria P, Joghani RA (2021) Development of an electrochemical sensor for the determination of antibiotic sulfamethazine in cow milk using graphene oxide decorated with Cu–Ag core–shell nanoparticles. Anal Methods 13:910–917. https://doi.org/10.1039/D0AY02261F

    Article  CAS  PubMed  Google Scholar 

  48. Zeng YF, Li Q, Wang WJ, Wen YP, Ji KX, Liu XX, He PP, Janegitz BC, Tang KJ (2022) The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchem J 182:107898. https://doi.org/10.1016/j.microc.2022.107898

    Article  CAS  Google Scholar 

  49. Bueno AM, Contento AM, Ríos Á (2013) Validation of a screening method for the rapid control of sulfonamide residues based on electrochemical detection using multiwalled carbon nanotubes-glassy carbon electrodes. Anal Methods 5:6821–6829. https://doi.org/10.1039/C3AY41437J

    Article  CAS  Google Scholar 

  50. Qiu DY, Wang XQ, Wen YP, Zeng YF, Li WQ, Zhao L, Chen LL, Xiong JH, Tang KJ (2022) A Low-cost wireless intelligent portable sensor based on disposable laser-induced porous graphene flexible electrode decorated by gold nanoshells for rapid detection of sulfonamides in aquatic products. Food Aanl Method 15:1471–1481. https://doi.org/10.1007/s12161-021-02198-8

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 81860701, 82060714), Guizhou Provincial Science and Technology Projects (No. ZK[2021]242), The Innovation Team Project of Guizhou Higher Education ([2022]013), and the open project of Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry (KSUZDSYS202104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Du.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31940 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Hu, H., Ai, J. et al. Pt-functionalized S-doped g-C3N4 nanosheet for sensitive electrochemical determination of sulfamonomethoxine. Carbon Lett. 34, 917–927 (2024). https://doi.org/10.1007/s42823-023-00606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00606-z

Keywords

Navigation