Skip to main content
Log in

Mechanical and microstructural properties of ultrafine slag cement mortar reinforced with graphene oxide nanosheets

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) and ultrafine slag (UFS) have been applied to reinforce cement mortar cubes (CMC) in this research. The consequences of GO and UFS on the mechanical attributes of the CMC were explored through experimental investigations. Established on the results, at the 28 days of hydration, the CMC compressive and flexural strength with 0.03% of GO and 10% UFS were 89.8 N/mm2 and 9.1 N/mm2, respectively. Furthermore, the structural changes of CMC with GO and UFS were qualitatively analysed with instrumental techniques such as scanning electron microscope (SEM), X-ray fluorescence (XRF), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), FT Raman spectroscopy, atomic force microscopy (AFM), and 27Al, 29Si-Nuclear magnetic resonance spectroscopy (NMR). SEM results reported that GO and UFS formed an aggregated nanostructure that improved the microstructural properties of the CMC. TGA analysis revealed the quantum of calcium hydrate and bound water accomplished by supplementing GO bound to the UFS aggregates. FT-IR analysis of the CMC samples confirmed the ‘O-’comprising functional groups of GO which expedited the formation of complexes between calcium carbonate (CaCO3) and UFS. 0.03% GO was the optimum dosage that enhanced the compressive and flexural attributes when combined with 10% UFS in CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the outcomes of this research are accessible within the article.

References

  1. Ul Haq I, Elahi A, Nawaz A, Aamir Qadeer Shah S, Ali K (2022) Mechanical and durability performance of concrete mixtures incorporating bentonite, silica fume, and polypropylene fibers. Constr Build Mater 345:128223. https://doi.org/10.1016/j.conbuildmat.2022.128223

    Article  CAS  Google Scholar 

  2. Srinath BLNS, Patnaikuni CK, Balaji KVGD, Kumar BS, Manjunatha M (2021) A prospective review of alccofine as supplementary cementitious material. Mater Today Proc 47:3953–3959. https://doi.org/10.1016/j.matpr.2021.03.719

    Article  CAS  Google Scholar 

  3. Aldahdooh MAA, Muhamad Bunnori N, Megat Johari MA (2013) Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash. Constr Build Mater 48:379–389. https://doi.org/10.1016/j.conbuildmat.2013.07.007

    Article  Google Scholar 

  4. Yu R, Tang P, Spiesz P, Brouwers HJH (2014) A study of multiple effects of nano-silica and hybrid fibres on the properties of ultra-high performance fibre reinforced concrete (UHPFRC) incorporating waste bottom ash (WBA). Constr Build Mater 60:98–110. https://doi.org/10.1016/j.conbuildmat.2014.02.059

    Article  Google Scholar 

  5. Huang W, Kazemi-Kamyab H, Sun W, Scrivener K (2017) Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Mater Des 121:36–46. https://doi.org/10.1016/j.matdes.2017.02.052

    Article  CAS  Google Scholar 

  6. Van Tuan N, Ye G, Van Breugel K, Fraaij ALA, Dai Bui D (2011) The study of using rice husk ash to produce ultra high performance concrete. Constr Build Mater 25:2030–2035

    Article  Google Scholar 

  7. Tafraoui A, Escadeillas G, Lebaili S, Vidal T (2009) Metakaolin in the formulation of UHPC. Constr Build Mater 23:669–674. https://doi.org/10.1016/j.conbuildmat.2008.02.018

    Article  Google Scholar 

  8. Wang H-Y, Wang W-C, Wang JC, Chen Y-W (2021) Evaluation of the engineering properties and durability of mortar produced using ground granulated blast-furnace slag and stainless steel reduced slag. Constr Build Mater 280:122498. https://doi.org/10.1016/j.conbuildmat.2021.122498

    Article  CAS  Google Scholar 

  9. Reddy GGK, Ramadoss P (2020) Influence of alccofine incorporation on the mechanical behavior of ultra-high performance concrete (UHPC). Mater Today Proc 33:789–797. https://doi.org/10.1016/j.matpr.2020.06.180

    Article  CAS  Google Scholar 

  10. Gupta S, Sharma S, Sharma ED (2013) A review on alccofine: a supplementary cementitous material. Int J Mod Trends Eng Res 3(2):148–153

    Google Scholar 

  11. Soni D, Kulkarni S, Parekh V (2013) Experimental study on high-performance concrete, with mixing of alccofine and flyash. Indian J Res 3:84–86

    Google Scholar 

  12. Suthar S, Shah BK, Patel PJ (2013) Study on effect of alccofine & fly ash addition on the mechanical properties of high performance concrete. Int J Sci Res Dev 1(3):464–467

    Google Scholar 

  13. Hamraj M (2014) Experimental study on binary blended high strength steel fibre-reinforced concrete using alccofine as mineral admixture. Int J Sci Eng Technol 2:56–62

    Google Scholar 

  14. Rajesh Kumar S, Samanta AK, Roy DKS (2015) An experimental study on the mechanical properties of alccofine based high grade concrete. Int J Multidiscip Res Dev 2:218–224

    Google Scholar 

  15. Abhilash D, Swetha V, Meshram P (2021) An overview on chemical processes for synthesis of graphene from waste carbon resources. Carbon Lett. https://doi.org/10.1007/s42823-021-00313-7

    Article  Google Scholar 

  16. Toyoda M, Hou S, Huang Z-H, Inagaki M (2023) Exfoliated graphite: room temperature exfoliation and their applications. Carbon Lett 33:335–362. https://doi.org/10.1007/s42823-022-00450-7

    Article  Google Scholar 

  17. Kumar A, Sharma K, Dixit A (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  18. Sayam A, Smriti S, Ahmed F, Rahman ANMM (2022) A review on carbon fiber-reinforced hierarchical composites: mechanical performance, manufacturing process, structural applications and allied challenges. Carbon Lett. https://doi.org/10.1007/s42823-022-00358-2

    Article  Google Scholar 

  19. Chintalapudi K, Pannem RMR (2020) An intense review on the performance of Graphene Oxide and reduced Graphene Oxide in an admixed cement system. Constr Build Mater 259:120598. https://doi.org/10.1016/j.conbuildmat.2020.120598

    Article  CAS  Google Scholar 

  20. Chintalapudi K, Pannem RMR (2020) The effects of graphene oxide addition on hydration process, crystal shapes, and microstructural transformation of ordinary portland cement. J Build Eng 32:101551. https://doi.org/10.1016/j.jobe.2020.101551

    Article  Google Scholar 

  21. Prabavathy S, Jeyasubramanian K, Prasanth S, Hikku GS, Robert RBJ (2020) Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide. J Build Eng 28:101082. https://doi.org/10.1016/j.jobe.2019.101082

    Article  Google Scholar 

  22. Wang Y, Qi R, Jiang Y, Sun C, Zhang G, Hu Y, Yang Z-D, Li W (2018) Transport and photoelectric properties of 2D silicene/MX2 (M = Mo, W; X = S, Se) heterostructures. ACS Omega 3:13251–13262. https://doi.org/10.1021/acsomega.8b01282

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  24. Li G, Yuan JB, Zhang YH, Zhang N, Liew KM (2018) Microstructure and mechanical performance of graphene reinforced cementitious composites. Compos Part A Appl Sci Manuf 114:188–195. https://doi.org/10.1016/j.compositesa.2018.08.026

    Article  CAS  Google Scholar 

  25. e Silva RA, de Castro Guetti P, da Luz MS, Rouxinol F, Gelamo RV (2017) Enhanced properties of cement mortars with multilayer graphene nanoparticles. Constr Build Mater 149:378–385. https://doi.org/10.1016/j.conbuildmat.2017.05.146

    Article  CAS  Google Scholar 

  26. Wang Q, Wang J, Lu C, Liu B, Zhang K, Li C (2015) Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater 30:349–356. https://doi.org/10.1016/S1872-5805(15)60194-9

    Article  CAS  Google Scholar 

  27. Tatineni YS, Putta J (2022) Enhanced strength, durability, and microstructural attributes of graphene oxide-modified ultrafine slag cement mortar. Buildings. https://doi.org/10.3390/buildings12122199

    Article  Google Scholar 

  28. Ys T, Jagadeesh P (2022) Effect of graphene oxide on the microstructure and hydration characteristics of ultrafine slag cement composites. Fuller Nanotub Carbon Nanostruct. https://doi.org/10.1080/1536383X.2022.2068529

    Article  Google Scholar 

  29. Yang H, Monasterio M, Cui H, Han N (2017) Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Compos Part A Appl Sci Manuf 102:263–272. https://doi.org/10.1016/j.compositesa.2017.07.022

    Article  CAS  Google Scholar 

  30. Feng Y, Zhang Q, Chen Q, Wang D, Guo H, Liu L, Yang Q (2019) Hydration and strength development in blended cement with ultrafine granulated copper slag. PLoS ONE 14(4):e0215677

    Article  CAS  Google Scholar 

  31. Li H-W, Wang R, Wei M-W, Lei N-Z, Sun H-X, Fan J-J (2022) Mechanical properties and hydration mechanism of high-volume ultra-fine iron ore tailings cementitious materials. Constr Build Mater 353:129100. https://doi.org/10.1016/j.conbuildmat.2022.129100

    Article  CAS  Google Scholar 

  32. Pardal X, Brunet F, Charpentier T, Pochard I, Nonat A (2012) 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. Inorg Chem 51:1827–1836. https://doi.org/10.1021/ic202124x

    Article  CAS  Google Scholar 

  33. C109/109M-16a A (2016) Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or cube specimens). Annu B ASTM Stand 04:1–10. https://doi.org/10.1520/C0109

    Article  Google Scholar 

  34. Devi SC, Khan RA (2020) Compressive strength and durability behavior of graphene oxide reinforced concrete composites containing recycled concrete aggregate. J Build Eng 32:101800. https://doi.org/10.1016/j.jobe.2020.101800

    Article  Google Scholar 

  35. Santamaría A, González JJ, Losáñez MM, Skaf M, Ortega-López V (2020) The design of self-compacting structural mortar containing steelmaking slags as aggregate. Cem Concr Compos 111:103627. https://doi.org/10.1016/j.cemconcomp.2020.103627

    Article  CAS  Google Scholar 

  36. Arora S, Jangra P, Lim YY, Pham TM (2022) Strength, durability, and microstructure of self-compacting geopolymer concrete produced with copper slag aggregates. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-22170-1

    Article  Google Scholar 

  37. Diamond S (2004) The microstructure of cement paste and concrete––a visual primer. Cem Concr Compos 26:919–933. https://doi.org/10.1016/j.cemconcomp.2004.02.028

    Article  CAS  Google Scholar 

  38. Bangaru SS, Wang C, Zhou X, Hassan M (2022) Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network. Autom Constr 144:104602. https://doi.org/10.1016/j.autcon.2022.104602

    Article  Google Scholar 

  39. Khelifi S, Ayari F, Tiss H, Chehimi DBH (2017) X-ray fluorescence analysis of portland cement and clinker for major and trace elements: accuracy and precision. J Aust Ceram Soc. https://doi.org/10.1007/s41779-017-0087-x

    Article  Google Scholar 

  40. Brebbia CA, Klemm A (2013) Materials characterisation VI: computational methods and experiments. WIT Press, Southampton

    Book  Google Scholar 

  41. Zheng D, Cui H, Tang W, Sang G, Lo TY (2021) Influence and mechanisms of active silica in solid waste on hydration of tricalcium aluminate in the resulting composite cement. Mater Today Commun 27:102262. https://doi.org/10.1016/j.mtcomm.2021.102262

    Article  CAS  Google Scholar 

  42. Liu G, Schollbach K, Li P, Brouwers HJH (2021) Valorization of converter steel slag into eco-friendly ultra-high performance concrete by ambient CO2 pre-treatment. Constr Build Mater 280:122580. https://doi.org/10.1016/j.conbuildmat.2021.122580

    Article  CAS  Google Scholar 

  43. Mehta J, Faucett A, Sharma A, Mativetsky J (2017) How reliable are Raman spectroscopy measurements of graphene oxide? J Phys Chem C. https://doi.org/10.1021/acs.jpcc.7b04517

    Article  Google Scholar 

  44. López Díaz D, Delgado Notario J, Clerico V, Diez E, Merchán Moreno MD, Velázquez MM (2020) Towards understanding the Raman spectrum of graphene oxide: the effect of the chemical composition. Coatings 10:524. https://doi.org/10.3390/coatings10060524

    Article  CAS  Google Scholar 

  45. Lee A, Yang K, Nguyen DA, Park C, Lee S, Lee T, Jeong MS (2021) Raman study of D* band in graphene oxide and its correlation with reduction. Appl Surf Sci 536:147990. https://doi.org/10.1016/j.apsusc.2020.147990

    Article  CAS  Google Scholar 

  46. Bu T, Gao H, Yao Y, Wang J, Pollard AJ, Legge EJ, Clifford CA, Delvallée A, Ducourtieux S, Lawn MA, Babic B, Coleman VA, Jämting Å, Zou S, Chen M, Jakubek ZJ, Iacob E, Chanthawong N, Mongkolsuttirat K, Zeng G, Almeida CM, He B-C, Hyde L, Ren L (2023) Thickness measurements of graphene oxide flakes using atomic force microscopy: results of an international interlaboratory comparison. Nanotechnology 34:225702. https://doi.org/10.1088/1361-6528/acbf58

    Article  Google Scholar 

  47. Chintalapudi K, Pannem RMR (2019) Strength properties of graphene oxide cement composites. Mater Today Proc 45:3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369

    Article  CAS  Google Scholar 

  48. Zhang X, Ji Y, Pel L, Sun Z, Smeulders D (2022) Early-age hydration and shrinkage of cement paste with coir fibers as studied by nuclear magnetic resonance. Constr Build Mater 336:127460. https://doi.org/10.1016/j.conbuildmat.2022.127460

    Article  CAS  Google Scholar 

  49. Zhao K, Ma C, Yang J, Wu J, Yan Y, Lai Y, Ao W, Tian Y (2023) Pore fractal characteristics of fiber-reinforced backfill based on nuclear magnetic resonance. Powder Technol 426:118678. https://doi.org/10.1016/j.powtec.2023.118678

    Article  CAS  Google Scholar 

  50. Peyvandi A, Holmes D, Soroushian P, Balachandra AM (2015) Monitoring of sulfate attack in concrete by Al27 and Si29 MAS NMR spectroscopy. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0001175

    Article  Google Scholar 

  51. Schneider J, Cincotto MA, Panepucci H (2001) 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem Concr Res 31:993–1001. https://doi.org/10.1016/S0008-8846(01)00530-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank VIT, Vellore for providing research facilities for carrying out this research work.

Funding

The authors declare that no grant was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The study’s inception and design involved input from all the authors. PJ oversaw the material preparation, data collecting, and analysis that were carried out by TYS. PJ reviewed and edited the first draft of the article that TYS prepared. All the authors then read and approved the final document.

Corresponding author

Correspondence to P. Jagadeesh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

All the procedures followed were in accordance with ethical standards.

Consent for publication

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeswanth Sai, T., Jagadeesh, P. Mechanical and microstructural properties of ultrafine slag cement mortar reinforced with graphene oxide nanosheets. Carbon Lett. 33, 1649–1660 (2023). https://doi.org/10.1007/s42823-023-00571-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00571-7

Keywords

Navigation