Skip to main content

Advertisement

Log in

Carbon-based materials in proton exchange membrane fuel cells: a critical review on performance and application

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

A Correction to this article was published on 11 December 2023

This article has been updated

Abstract

Proton exchange membrane fuel cells (PEMFCs) are an auspicious energy conversion technology with the potential to address rising energy demands while reducing greenhouse gas emissions. The stack’s performance, durability, and economy scale are greatly influenced by the materials used for the PEMFC, viz., the membrane electrocatalyst assembly (MEA) and bipolar flow plates (BPPs). Despite extensive study, carbon-based materials have outstanding physicochemical, electrical, and structural attributes crucial to stack performance, making them an excellent choice for PEMFC manufacturers. Carbon materials substantially impact the cost, performance, and durability of PEMFCs since they are prevalently sought for and widely employed in the construction of BPPs and gas diffusion layers (GDLs)) and in electrocatalysts as a support material. Consequently, it is essential to assemble a review that centers on utilizing such material potential, focusing on its research development, applications, problems, and future possibilities. The prime focus of this assessment is to offer a clear understanding of the potential roles of carbon and its allotropes in PEMFC applications. Consequently, this article comprehensively evaluates the applicability, functionality, recent advancements, and ambiguous concerns associated with carbon-based materials in PEMFCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: Jayakumar [39]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and coding materials

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

Change history

  • 27 December 2023

    The original publication has been corrected. A missing figure source has been added. Also, equation 1 has been corrected.

  • 11 December 2023

    A Correction to this paper has been published: https://doi.org/10.1007/s42823-023-00664-3

References

  1. Akalework NG, Pan C-J, Su W-N, Rick J, Tsai M-C, Lee J-F, Lin J-M, Tsai L-D, Hwang B-J (2012) Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. J Mater Chem 22:20977–20985. https://doi.org/10.1039/C2JM34361D

    Article  CAS  Google Scholar 

  2. Alpaydin GU, Devrim Y, Colpan CO (2019) Performance of an HT-PEMFC having a catalyst with graphene and multiwalled carbon nanotube support. Int J Energy Res 43:3578–3589. https://doi.org/10.1002/er.4504

    Article  CAS  Google Scholar 

  3. Antunes RA, de Oliveira MCL, Ett G, Ett V (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance. J Power Sources 196:2945–2961. https://doi.org/10.1016/j.jpowsour.2010.12.041

    Article  CAS  Google Scholar 

  4. Athanasaki G, Chauhan N, Ahmad R, Kannan AM (2021) Accelerated stress testing of PUREBLACK® carbon-based gas diffusion layers with pore forming agent for proton exchange membrane fuel cells. Int J Hydrogen Energy 46:31754–31763. https://doi.org/10.1016/j.ijhydene.2021.07.052

    Article  CAS  Google Scholar 

  5. Bajpai A, Jain PK (2022) Investigation on 3D printing of graphene and multi-walled carbon nanotube mixed flexible electrically conductive parts using fused filament fabrication. J Materi Eng Perform: 1–10. https://doi.org/10.1007/s11665-022-07574-x

  6. Banerjee J, Dutta K, Rana D (2019) Carbon nanomaterials in renewable energy production and storage applications. In: Rajendran S, Naushad Mu, Raju K, Boukherroub R (eds) Emerging nanostructured materials for energy and environmental science. Springer, Cham, pp 51–104

  7. Berber MR, Hafez IH, Fujigaya T, Nakashima N (2015) A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci Rep 5:16711. https://doi.org/10.1038/srep16711

    Article  CAS  Google Scholar 

  8. Birat J-P (2012) Materials, beyond life cycle thinking. Metallur Res Technol 109:273–291. https://doi.org/10.1051/metal/2012026

    Article  Google Scholar 

  9. Borup RL, Kusoglu A, Neyerlin KC, Mukundan R, Ahluwalia RK, Cullen DA, More KL, Weber AZ, Myers DJ (2020) Recent developments in catalyst-related PEM fuel cell durability. Curr Opin Electrochem 21:192–200. https://doi.org/10.1016/j.coelec.2020.02.007

    Article  CAS  Google Scholar 

  10. Brandão L, Passeira C, Mirabile Gattia D, Mendes A (2011) Use of single wall carbon nanohorns in polymeric electrolyte fuel cells. J Mater Sci 46:7198–7205. https://doi.org/10.1007/s10853-010-4638-6

    Article  CAS  Google Scholar 

  11. Brodt M, Wycisk R, Pintauro PN (2013) Nanofiber electrodes with low platinum loading for high power hydrogen/air PEM fuel cells. J Electrochem Soc 160:F744. https://doi.org/10.1149/2.008308jes

    Article  CAS  Google Scholar 

  12. Chen H, Xia X-H, Yang L, He Y, Liu H (2016) Preparation and characterization of graphite/resin composite bipolar plates for polymer electrolyte membrane fuel cells. Sci Eng Compos Mater 23:21–28. https://doi.org/10.1515/secm-2013-0306

    Article  CAS  Google Scholar 

  13. Chen H, Zhao X, Zhang T, Pei P (2019) The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review. Energy Convers Manage 182:282–298. https://doi.org/10.1016/j.enconman.2018.12.049

    Article  CAS  Google Scholar 

  14. Chen S, Xu R, Huang H, Yi F, Zhou X, Zeng H (2007) Reduction–adsorption behavior of platinum ions on activated carbon fibers. J Mater Sci 42:9572–9581. https://doi.org/10.1007/s10853-007-1748-x

    Article  CAS  Google Scholar 

  15. Cruz-Martínez H, Rojas-Chávez H, Matadamas-Ortiz PT, Ortiz-Herrera JC, López-Chávez E, Solorza-Feria O, Medina DI (2021) Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater Today Phys 19:100406. https://doi.org/10.1016/j.mtphys.2021.100406

  16. Cullen DA, Neyerlin KC, Ahluwalia RK, Mukundan R, More KL, Borup RL, Weber AZ, Myers DJ, Kusoglu A (2021) New roads and challenges for fuel cells in heavy-duty transportation. Nat Energy 6:462–474. https://doi.org/10.1038/s41560-021-00775-z

    Article  CAS  Google Scholar 

  17. Daud WRW, Rosli RE, Majlan EH, Hamid SAA, Mohamed R, Husaini T (2017) PEM fuel cell system control: a review. Renew Energy 113:620–638. https://doi.org/10.1016/j.renene.2017.06.027

    Article  CAS  Google Scholar 

  18. Destyorini F, Irmawati Y, Hardiansyah A, Widodo H, Yahya IND, Indayaningsih N, Yudianti R, Hsu Y-I, Uyama H (2021) Formation of nanostructured graphitic carbon from coconut waste via low-temperature catalytic graphitisation. Eng Sci Technol Int J 24:514–523. https://doi.org/10.1016/j.jestch.2020.06.011

    Article  Google Scholar 

  19. Dhand V, Yadav M, Kim SH, Rhee KY (2021) A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high- performance energy storage material. Carbon 175:534–575. https://doi.org/10.1016/j.carbon.2020.12.083

    Article  CAS  Google Scholar 

  20. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43:5288–5301. https://doi.org/10.1039/C4CS00060A

    Article  CAS  Google Scholar 

  21. Escorihuela J, Narducci R, Compañ V, Costantino F (2019) Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications. Adv Mater Interfaces 6:1801146. https://doi.org/10.1002/admi.201801146

    Article  CAS  Google Scholar 

  22. Etesami M, Mehdipour-Ataei S, Somwangthanaroj A, Kheawhom S (2022) Recent progress of electrocatalysts for hydrogen proton exchange membrane fuel cells. Int J Hydrogen Energy 47:41956–41973. https://doi.org/10.1016/j.ijhydene.2021.09.133

    Article  CAS  Google Scholar 

  23. Fadzillah DM, Rosli MI, Talib MZM, Kamarudin SK, Daud WRW (2017) Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells. Renew Sustain Energy Rev 77:1001–1009. https://doi.org/10.1016/j.rser.2016.11.235

    Article  CAS  Google Scholar 

  24. Fujigaya T, Kim C, Matsumoto K, Nakashima N (2013) Effective anchoring of Pt-nanoparticles onto sulfonated polyelectrolyte-wrapped carbon nanotubes for use as a fuel cell electrocatalyst. Polym J 45:326–330. https://doi.org/10.1038/pj.2012.145

    Article  CAS  Google Scholar 

  25. Fujigaya T, Saito C, Han Z, Nakashima N (2017) Ionomer grafting to polymer-wrapped carbon nanotubes for polymer electrolyte membrane fuel cell electrocatalyst. Chem Lett 46:1660–1663. https://doi.org/10.1246/cl.170744

    Article  CAS  Google Scholar 

  26. Gautam RK, Kumar A (2022) A review of bipolar plate materials and flow field designs in the all-vanadium redox flow battery. J Energy Storage 48:104003. https://doi.org/10.1016/j.est.2022.104003

  27. Gumilar DA, Indayaningsih N, Subhan A, Prastomo N, Hastuty S (2018) Fabrication of gas diffusion layer from carbon ramie fiber by hot press method. IOP Conf Ser Mater Sci Eng 432:012029. https://doi.org/10.1088/1757-899X/432/1/012029

  28. Gupta C, Maheshwari PH, Dhakate SR (2016) Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst. Mater Renew Sustain Energy 5:2. https://doi.org/10.1007/s40243-015-0066-5

    Article  Google Scholar 

  29. Gupta N, Gupta SM, Sharma SK (2019) Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett 29:419–447. https://doi.org/10.1007/s42823-019-00068-2

    Article  Google Scholar 

  30. Hambardzumyan A, Vayer M, Foulon L, Pernes M, Devers T, Bigarré J, Aguié-Béghin V (2022) Nafion membranes reinforced by cellulose nanocrystals for fuel cell applications: aspect ratio and heat treatment effects on physical properties. J Mater Sci 57:4684–4703. https://doi.org/10.1007/s10853-022-06921-6

    Article  CAS  Google Scholar 

  31. Han A, Zhang Z, Yang J, Wang D, Li Y (2021) Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 17:2004500. https://doi.org/10.1002/smll.202004500

    Article  CAS  Google Scholar 

  32. Hu B, Chang F-L, Xiang L-Y, He G-J, Cao X-W, Yin X-C (2021) High performance polyvinylidene fluoride/graphite/multi-walled carbon nanotubes composite bipolar plate for PEMFC with segregated conductive networks. Int J Hydrogen Energy 46:25666–25676. https://doi.org/10.1016/j.ijhydene.2021.05.081

    Article  CAS  Google Scholar 

  33. Indayaningsih N, Zulfia A, Priadi D, Hendrana S (2016) Preparation of carbon composite from coconut fiber for gas diffusion layer. Ionics 22:1445–1449. https://doi.org/10.1007/s11581-016-1657-6

    Article  CAS  Google Scholar 

  34. Islam MN, Mansoor Basha AB, Kollath VO, Soleymani AP, Jankovic J, Karan K (2022) Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat Commun 13:6157. https://doi.org/10.1038/s41467-022-33892-8

    Article  CAS  Google Scholar 

  35. Iwan A, Malinowski M, Pasciak G (2015) Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renew Sustain Energy Rev 49:954–967. https://doi.org/10.1016/j.rser.2015.04.093

    Article  CAS  Google Scholar 

  36. Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117. https://doi.org/10.1039/C0JM00467G

    Article  Google Scholar 

  37. Jaleh B, Nasrollahzadeh M, Eslamipanah M, Nasri A, Shabanlou E, Manwar NR, Zboril R, Fornasiero P, Gawande MB (2022) The role of carbon-based materials for fuel cells performance. Carbon 198:301–352. https://doi.org/10.1016/j.carbon.2022.07.023

    Article  CAS  Google Scholar 

  38. Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, Mustafa MZ, Hanbazazah AS (2022) Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. Chemosphere 303:135204. https://doi.org/10.1016/j.chemosphere.2022.135204

  39. Jayakumar A (2019) A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack. Front Energy 13:325–338. https://doi.org/10.1007/s11708-019-0618-y

    Article  Google Scholar 

  40. Jayakumar A, Madheswaran DK, Kannan AM, Sureshvaran U, Sathish J (2022) Can hydrogen be the sustainable fuel for mobility in India in the global context? Int J Hydrogen Energy 47:33571–33596. https://doi.org/10.1016/j.ijhydene.2022.07.272

    Article  CAS  Google Scholar 

  41. Jayakumar A, Madheswaran DK, Kumar NM (2021) A critical assessment on functional attributes and degradation mechanism of membrane electrode assembly components in direct methanol fuel cells. Sustainability 13:13938. https://doi.org/10.3390/su132413938

    Article  CAS  Google Scholar 

  42. Jayakumar A, Madheswaran DK, Velu R (2023) Metal additive manufacturing of PEM fuel cell flow field plates and the scope of nanomaterials for its fabrication. In: Nanotechnology-Based Additive Manufacturing. Wiley, pp 103–129

  43. Jayakumar A, Sethu SP, Ramos M, Robertson J, Al-Jumaily A (2015) A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21:1–18. https://doi.org/10.1007/s11581-014-1322-x

    Article  CAS  Google Scholar 

  44. Jeong KI, Oh J, Song SA, Lee D, Lee DG, Kim SS (2021) A review of composite bipolar plates in proton exchange membrane fuel cells: electrical properties and gas permeability. Compos Struct 262:113617. https://doi.org/10.1016/j.compstruct.2021.113617

  45. Jha N, Ramesh P, Bekyarova E, Tian X, Wang F, Itkis ME, Haddon RC (2013) Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci Rep 3:2257. https://doi.org/10.1038/srep02257

    Article  Google Scholar 

  46. Jiang X, Drzal LT (2012) Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates. J Power Sourc 218:297–306. https://doi.org/10.1016/j.jpowsour.2012.07.001

    Article  CAS  Google Scholar 

  47. Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B, Zhao Y, Fan L, Wang H, Hou Z, Huo S, Brandon NP, Yin Y, Guiver MD (2021) Designing the next generation of proton-exchange membrane fuel cells. Nature 595:361–369. https://doi.org/10.1038/s41586-021-03482-7

    Article  CAS  Google Scholar 

  48. Job N, Berthon-Fabry S, Lambert S, Chatenet M, Maillard F, Brigaudet M, Pirard J-P (2009) Carbon xerogels as supports for catalysts and electrocatalysts. In: International Carbon Conference 2009. http://orbi.ulg.ac.be/handle/2268/12011

  49. Kakati BK, Ghosh A, Verma A (2013) Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell. Int J Hydrogen Energy 38:9362–9369.https://doi.org/10.1016/j.ijhydene.2012.11.075

  50. Kakati BK, Yamsani VK, Dhathathreyan KS, Sathiyamoorthy D, Verma A (2009) The electrical conductivity of a composite bipolar plate for fuel cell applications. Carbon 47:2413–2418. https://doi.org/10.1016/j.carbon.2009.04.034

    Article  CAS  Google Scholar 

  51. Karousos DS, Desdenakis KI, Sakkas PM, Sourkouni G, Pollet BG, Argirusis C (2017) Sonoelectrochemical one-pot synthesis of Pt—Carbon black nanocomposite PEMFC electrocatalyst. Ultrason Sonochem 35:591–597. https://doi.org/10.1016/j.ultsonch.2016.05.023

    Article  CAS  Google Scholar 

  52. Kaushal S, Sahu AK, Rani M, Dhakate SR (2019) Multiwall carbon nanotubes tailored porous carbon fiber paper-based gas diffusion layer performance in polymer electrolyte membrane fuel cell. Renew Energy 142:604–611. https://doi.org/10.1016/j.renene.2019.04.096

    Article  CAS  Google Scholar 

  53. Kaya O, Buran D, Akkurt N, Yapici K, Sarac MF (2021) Characterization of various carbon-based polypropylene nanocomposites. J Materi Eng Perform 30:190–201. https://doi.org/10.1007/s11665-020-05398-1

    Article  CAS  Google Scholar 

  54. Khosravi HS, Abbas Q, Reichmann K (2021) Electrochemical aspects of interconnect materials in PEMFCs. Int J Hydrogen Energy 46:35420–35447. https://doi.org/10.1016/j.ijhydene.2021.08.105

    Article  CAS  Google Scholar 

  55. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52. https://doi.org/10.1016/j.jiec.2014.04.030

    Article  CAS  Google Scholar 

  56. Kim HY, Im DS, Son U-H, Lee HR, Joh H-I (2022) Replacement effect of fresh electrolyte on the accelerated deactivation test and recovery process of Pt/C catalysts in a half-cell system. Carbon Lett 32:313–319. https://doi.org/10.1007/s42823-021-00310-w

    Article  Google Scholar 

  57. Kim JY, Lee S, Kim T-Y, Pak C, Kim H-T (2014) Highly durable electrocatalyst with graphitized carbon supports modified by diazonium reaction for polymer electrolyte membrane fuel cell. Carbon 77:525–537. https://doi.org/10.1016/j.carbon.2014.05.058

    Article  CAS  Google Scholar 

  58. Ko D, Doh S, Yu DI, Park HS, Kim MH (2018) The change of water distribution in porous media of the polymer electrolyte membrane fuel cell after freeze/thaw cycles. Fuel Cells 18:413–421. https://doi.org/10.1002/fuce.201700121

    Article  CAS  Google Scholar 

  59. Kuan Y-D, Wang C-K, Yang C, Lee P-C, Siao Y-S, Lee C-Y (2020) Fuel cell stack design using carbon fiber composites. Sens Mater 32:4233–4244. https://doi.org/10.18494/SAM.2020.3103

  60. Kumar A, Sharma K, Dixit AR (2021) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett 31:149–165. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  61. Lee FC, Ismail MS, Ingham DB, Hughes KJ, Ma L, Lyth SM, Pourkashanian M (2022) Alternative architectures and materials for PEMFC gas diffusion layers: a review and outlook. Renew Sustain Energy Rev 166:112640. https://doi.org/10.1016/j.rser.2022.112640

  62. Lee HE, Han SH, Song SA, Kim SS (2015) Novel fabrication process for carbon fiber composite bipolar plates using sol gel and the double percolation effect for PEMFC. Compos Struct 134:44–51. https://doi.org/10.1016/j.compstruct.2015.08.037

    Article  Google Scholar 

  63. Lees EW, Mowbray BAW, Parlane FGL, Berlinguette CP (2022) Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater 7:55–64. https://doi.org/10.1038/s41578-021-00356-2

    Article  CAS  Google Scholar 

  64. Li B, Wang J, Gao X, Qin C, Yang D, Lv H, Xiao Q, Zhang C (2019) High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Res 12:281–287. https://doi.org/10.1007/s12274-018-2211-9

    Article  CAS  Google Scholar 

  65. Li H, Cheng X, Yan X, Shen S, Zhang J (2023) A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC. Nano Res 16:377–390. https://doi.org/10.1007/s12274-022-4642-6

    Article  CAS  Google Scholar 

  66. Li Y, Wang F, Zhu H (2020) Synthesis of H2O2–CTAB dual-modified carbon black-supported Pt3Ni to improve catalytic activity for ORR. J Mater Sci 55:11241–11252. https://doi.org/10.1007/s10853-020-04808-y

    Article  CAS  Google Scholar 

  67. Lian B, Chen L, Liu M, Fang T, Hu J, Li H (2020) The quantitative analysis for the formation of carbon fiber paper and its influencing factors. J Mater Sci 55:6566–6580. https://doi.org/10.1007/s10853-020-04465-1

    Article  CAS  Google Scholar 

  68. Li-li F, Yue C, Ji-gang LI, Si-yao T, Jun-zhao DU, Tong-yan LI, Xing-guo LI (2021) Research progress in carbon-based composite molded bipolar plates. gckxxb 43:585–593. https://doi.org/10.13374/j.issn2095-9389.2021.01.02.001

  69. Lin R, Tang S, Diao X, Zhong D, Chen L, Froning D, Hao Z (2020) Detailed optimization of multiwall carbon nanotubes doped microporous layer in polymer electrolyte membrane fuel cells for enhanced performance. Appl Energy 274:115214. https://doi.org/10.1016/j.apenergy.2020.115214

  70. Liu G, Hou F, Wang X, Fang B (2023) Conductive polymer and nanoparticle-promoted polymer hybrid coatings for metallic bipolar plates in proton membrane exchange water electrolysis. Appl Sci 13:1244. https://doi.org/10.3390/app13031244

    Article  CAS  Google Scholar 

  71. Liu Q, Lan F, Zeng C, Chen J, Wang J (2022) A review of proton exchange membrane fuel cell’s bipolar plate design and fabrication process. J Power Sour 538:231543. https://doi.org/10.1016/j.jpowsour.2022.231543

  72. Liu S, Yuan S, Liang Y, Li H, Xu Z, Xu Q, Yin J, Shen S, Yan X, Zhang J (2023) Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods. Int J Hydrogen Energy 48:4389–4417. https://doi.org/10.1016/j.ijhydene.2022.10.249

    Article  CAS  Google Scholar 

  73. Liu Z, Chen H, Zhang T (2022) Review on system mitigation strategies for start-stop degradation of automotive proton exchange membrane fuel cell. Appl Energy 327:120058. https://doi.org/10.1016/j.apenergy.2022.120058

  74. Luo Y, Jiao K (2018) Cold start of proton exchange membrane fuel cell. Prog Energy Combust Sci 64:29–61. https://doi.org/10.1016/j.pecs.2017.10.003

    Article  Google Scholar 

  75. Lyth SM, Nabae Y, Islam NM, Kuroki S, Kakimoto M, Miyata S (2012) Oxygen reduction activity of carbon nitride supported on carbon nanotubes. J Nanosci Nanotechnol 12:4887–4891. https://doi.org/10.1166/jnn.2012.4947

    Article  CAS  Google Scholar 

  76. Madheswaran DK, Jayakumar A (2021) Recent advancements on non-platinum based catalyst electrode material for polymer electrolyte membrane fuel cells: a mini techno-economic review. Bull Mater Sci 44:287. https://doi.org/10.1007/s12034-021-02572-6

    Article  CAS  Google Scholar 

  77. Madheswaran DK, Jayakumar A, Varuvel EG (2022) Recent advancement on thermal management strategies in PEM fuel cell stack: a technical assessment from the context of fuel cell electric vehicle application. Energy Sour Part A Recov Utilizat Environ Effects 44:3100–3125. https://doi.org/10.1080/15567036.2022.2058122

    Article  Google Scholar 

  78. Madheswaran DK, Jayakumar A, Velu R, Raj R, Varuvel EG (2022) Polymer based flow field plates for polymer electrolyte membrane fuel cell and the scope of additive manufacturing: a techno-economic review. Int J Energy Res 46:19737–19761. https://doi.org/10.1002/er.8645

    Article  CAS  Google Scholar 

  79. Maheshwari PH, Gupta C, Mathur RB (2014) Role of fiber length and pore former on the porous network of carbon paper electrode and its performance in PEMFC. Fuel Cells 14:566–573. https://doi.org/10.1002/fuce.201300290

    Article  CAS  Google Scholar 

  80. Mansir IB, Okonkwo PC (2023) A focused review of carbon corrosion mechanism in proton exchange membrane fuel cell during start-up and shut-down processes. Energy Sour Part A Recov Utilizat Environ Effects 45:3231–3245. https://doi.org/10.1080/15567036.2023.2195815

    Article  CAS  Google Scholar 

  81. Mathew C, Naina Mohamed S, Devanathan LS (2022) A comprehensive review of current research on various materials used for developing composite bipolar plates in polymer electrolyte membrane fuel cells. Polym Compos 43:4100–4114. https://doi.org/10.1002/pc.26691

    Article  CAS  Google Scholar 

  82. Mauger SA, Neyerlin KC, Alia SM, Ngo C, Babu SK, Hurst KE, Pylypenko S, Litster S, Pivovar BS (2018) Fuel cell performance implications of membrane electrode assembly fabrication with platinum-nickel nanowire catalysts. J Electrochem Soc 165:F238. https://doi.org/10.1149/2.1061803jes

    Article  CAS  Google Scholar 

  83. Mingge W, Congda L, Tao H, Guohai C, Donghui W, Haifeng Z, Dong Z, Aiying W (2016) Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell. Surf Coat Technol 307:374–381. https://doi.org/10.1016/j.surfcoat.2016.07.069

    Article  CAS  Google Scholar 

  84. Minke C, Turek T (2018) Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries—a review. J Power Sour 376:66–81. https://doi.org/10.1016/j.jpowsour.2017.11.058

    Article  CAS  Google Scholar 

  85. Mohd Radzuan NA, Sulong AB, Somalu MR, Abdullah AT, Husaini T, Rosli RE, Majlan EH, Rosli MI (2019) Fibre orientation effect on polypropylene/milled carbon fiber composites in the presence of carbon nanotubes or graphene as a secondary filler: application on PEM fuel cell bipolar plate. Int J Hydrogen Energy 44:30618–30626. https://doi.org/10.1016/j.ijhydene.2019.01.063

    Article  CAS  Google Scholar 

  86. Morgan JM, Datta R (2014) Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. J Power Sources 251:269–278. https://doi.org/10.1016/j.jpowsour.2013.09.090

    Article  CAS  Google Scholar 

  87. Mubasher MM, Ali M (2021) Structural, dielectric and electric modulus Studies of MnFe2O4/(MWCNTs)x nanocomposites. J Mater Eng Perform 30:4494–4503. https://doi.org/10.1007/s11665-021-05721-4

    Article  CAS  Google Scholar 

  88. Navarro A, Gómez M, Daza L, Lopez-Cascales JJ (2021) Production of gas diffusion layers with cotton fibers for its use in fuel cells. Res Square 1:1–11. https://doi.org/10.21203/rs.3.rs-1007793/v1

    Article  Google Scholar 

  89. Neelesh A, Vidhyashree S, Meera B (2020) The influence of MWCNT and hybrid (MWCNT/nanoclay) fillers on performance of EPDM-CIIR blends in nuclear applications: mechanical, hydrocarbon transport, and gamma-radiation aging characteristics. J Appl Polym Sci 137:49271. https://doi.org/10.1002/app.49271

    Article  CAS  Google Scholar 

  90. Okonkwo PC, Otor C (2021) A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. Int J Energy Res 45:3780–3800. https://doi.org/10.1002/er.6227

    Article  CAS  Google Scholar 

  91. Olabi AG, Wilberforce T, Alanazi A, Vichare P, Sayed ET, Maghrabie HM, Elsaid K, Abdelkareem MA (2022) Novel trends in proton exchange membrane fuel cells. Energies 15:4949. https://doi.org/10.3390/en15144949

    Article  CAS  Google Scholar 

  92. Owejan JE, Bhargava S, Litteer BA (2012) Surface chemistry of carbon black electrocatalyst supports as a result of a commercial synthethic route. ECS J Solid State Sci Technol 1:M33. https://doi.org/10.1149/2.004205jss

    Article  CAS  Google Scholar 

  93. Ozden A, Shahgaldi S, Li X, Hamdullahpur F (2019) A review of gas diffusion layers for proton exchange membrane fuel cells—with a focus on characteristics, characterization techniques, materials and designs. Prog Energy Combust Sci 74:50–102. https://doi.org/10.1016/j.pecs.2019.05.002

    Article  Google Scholar 

  94. Pan Y, Wang H, Brandon NP (2021) Gas diffusion layer degradation in proton exchange membrane fuel cells: Mechanisms, characterization techniques and modelling approaches. Journal of Power Sources 513:230560. doi: https://doi.org/10.1016/j.jpowsour.2021.230560

  95. Park J, Oh H, Ha T, Lee YI, Min K (2015) A review of the gas diffusion layer in proton exchange membrane fuel cells: durability and degradation. Appl Energy 155:866–880. https://doi.org/10.1016/j.apenergy.2015.06.068

    Article  CAS  Google Scholar 

  96. Park J, Oh H, Lee YI, Min K, Lee E, Jyoung J-Y (2016) Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance. Appl Energy 171:200–212. https://doi.org/10.1016/j.apenergy.2016.02.132

    Article  Google Scholar 

  97. Park S, Lee J-W, Popov BN (2012) A review of gas diffusion layer in PEM fuel cells: materials and designs. Int J Hydrogen Energy 37:5850–5865. https://doi.org/10.1016/j.ijhydene.2011.12.148

    Article  CAS  Google Scholar 

  98. Park S, Popov BN (2011) Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance. Fuel 90:436–440. https://doi.org/10.1016/j.fuel.2010.09.003

    Article  CAS  Google Scholar 

  99. Park Y-C, Kakinuma K, Uchida M, Tryk DA, Kamino T, Uchida H, Watanabe M (2013) Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling. Electrochim Acta 91:195–207. https://doi.org/10.1016/j.electacta.2012.12.082

    Article  CAS  Google Scholar 

  100. Pathak AK, Batabyal SK (2021) Formation of 2D-layered (CH3NH3)3Sb2I9 lead-free perovskite phase from CH3NH3I and SbSI: photodetection activity in carbon based lateral devices. J Electron Mater 50:5989–5994. https://doi.org/10.1007/s11664-021-09100-6

    Article  CAS  Google Scholar 

  101. Phuangngamphan M, Okhawilai M, Hiziroglu S, Rimdusit S (2019) Development of highly conductive graphite-/graphene-filled polybenzoxazine composites for bipolar plates in fuel cells. J Appl Polym Sci 136:47183. https://doi.org/10.1002/app.47183

    Article  CAS  Google Scholar 

  102. Plonska-Brzezinska ME (2019) Carbon nano-onions: a review of recent progress in synthesis and applications. ChemNanoMat 5:568–580. https://doi.org/10.1002/cnma.201800583

    Article  CAS  Google Scholar 

  103. Pollet BG, Goh JTE (2014) The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim Acta 128:292–303. https://doi.org/10.1016/j.electacta.2013.09.160

    Article  CAS  Google Scholar 

  104. Popov BN, Park S, Lee J-W (2017) Effect of gas diffusion layer structure on the performance of polymer electrolyte membrane fuel cell. in: electrocatalysts for low temperature fuel cells. Wiley, pp 489–509

  105. Porstmann S, Wannemacher T, Drossel W-G (2020) A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends. J Manuf Process 60:366–383. https://doi.org/10.1016/j.jmapro.2020.10.041

    Article  Google Scholar 

  106. Prykhodko Y, Fatyeyeva K, Hespel L, Marais S (2021) Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem Eng J 409:127329. https://doi.org/10.1016/j.cej.2020.127329

  107. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159. https://doi.org/10.1039/C6CS00620E

    Article  CAS  Google Scholar 

  108. Rabiee H, Ge L, Zhang X, Hu S, Li M, Yuan Z (2021) Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ Sci 14:1959–2008. https://doi.org/10.1039/D0EE03756G

    Article  CAS  Google Scholar 

  109. Rajeshkumar L, Ramesh M, Bhuvaneswari V, Balaji D (2023) Carbon nano-materials (CNMs) derived from biomass for energy storage applications: a review. Carbon Lett. https://doi.org/10.1007/s42823-023-00478-3

    Article  Google Scholar 

  110. Ramachandran S, Sathishkumar M, Kothurkar NK, Senthilkumar R (2018) Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite. IOP Conf Ser: Mater Sci Eng 310:012139. https://doi.org/10.1088/1757-899X/310/1/012139

  111. Ramesh M, Rajeshkumar L, Bhoopathi R (2021) Carbon substrates: a review on fabrication, properties and applications. Carbon Lett 31:557–580. https://doi.org/10.1007/s42823-021-00264-z

    Article  Google Scholar 

  112. Rasuli H, Rasuli R (2023) Nanoparticle-decorated graphene/graphene oxide: synthesis, properties and applications. J Mater Sci 58:2971–2992. https://doi.org/10.1007/s10853-023-08183-2

    Article  CAS  Google Scholar 

  113. Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B (2020) Current progress and performance improvement of Pt/C catalysts for fuel cells. J Mater Chem A 8:24284–24306. https://doi.org/10.1039/D0TA08312G

    Article  CAS  Google Scholar 

  114. Rodríguez-Varela J, Alonso-Lemus IL, Savadogo O, Palaniswamy K (2021) Overview: current trends in green electrochemical energy conversion and storage. J Mater Res 36:4071–4083. https://doi.org/10.1557/s43578-021-00417-w

    Article  CAS  Google Scholar 

  115. Rout C, Li H, Dupont V, Wadud Z (2022) A comparative total cost of ownership analysis of heavy duty on-road and off-road vehicles powered by hydrogen, electricity, and diesel. Heliyon 8:e12417. https://doi.org/10.1016/j.heliyon.2022.e12417

  116. Saadat N, Dhakal HN, Tjong J, Jaffer S, Yang W, Sain M (2021) Recent advances and future perspectives of carbon materials for fuel cell. Renew Sustain Energy Rev 138:110535. https://doi.org/10.1016/j.rser.2020.110535

  117. Sahu SK, Badgayan ND, Samanta S, Rama Sreekanth PS (2020) Experimental investigation on multidimensional carbon nanofiller reinforcement in HDPE: an evaluation of mechanical performance. Mater Today Proc 24:415–421. https://doi.org/10.1016/j.matpr.2020.04.293

    Article  CAS  Google Scholar 

  118. Saner B, Gürsel SA, Yürüm Y (2013) Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells. Fullerenes Nanotubes Carbon Nanostruct 21:233–247. https://doi.org/10.1080/1536383X.2011.613536

    Article  CAS  Google Scholar 

  119. Serag E, El-Maghraby A, El Nemr A (2022) Recent developments in the application of carbon-based nanomaterials in implantable and wearable enzyme-biofuel cells. Carbon Lett 32:395–412. https://doi.org/10.1007/s42823-021-00299-2

    Article  Google Scholar 

  120. Shahraeeni M, Hoorfar M (2013) Experimental and numerical comparison of water transport in untreated and treated diffusion layers of proton exchange membrane (PEM) fuel cells. J Power Sour 238:29–47. https://doi.org/10.1016/j.jpowsour.2013.03.023

    Article  CAS  Google Scholar 

  121. Shao Y, Dodelet J-P, Wu G, Zelenay P (2019) PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv Mater 31:1807615. https://doi.org/10.1002/adma.201807615

    Article  CAS  Google Scholar 

  122. Shukla A, Bhat SD, Pillai VK (2016) Simultaneous unzipping and sulfonation of multi-walled carbon nanotubes to sulfonated graphene nanoribbons for nanocomposite membranes in polymer electrolyte fuel cells. J Membr Sci 520:657–670. https://doi.org/10.1016/j.memsci.2016.08.019

    Article  CAS  Google Scholar 

  123. Singh NP, Gupta VK, Singh AP (2019) Graphene and carbon nanotube reinforced epoxy nanocomposites: a review. Polymer 180:121724. https://doi.org/10.1016/j.polymer.2019.121724

  124. Sinniah JD, Wong WY, Loh KS, Yunus RM, Timmiati SN (2022) Perspectives on carbon-alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sour 534:231422. https://doi.org/10.1016/j.jpowsour.2022.231422

  125. Soleymani AP, Parent LR, Jankovic J (2022) Challenges and opportunities in understanding proton exchange membrane fuel cell materials degradation using in-situ electrochemical liquid cell transmission electron microscopy. Adv Func Mater 32:2105188. https://doi.org/10.1002/adfm.202105188

    Article  CAS  Google Scholar 

  126. Song P, Qiao G, Hu X, Xia X, Xu G, Deng Z (2021) Current status and research progress of bipolar plates for proton exchange membrane fuel cells. In: 2021 International Conference on Power System Technology (POWERCON). pp 202–208

  127. Song Y, Zhang C, Ling C-Y, Han M, Yong R-Y, Sun D, Chen J (2020) Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int J Hydrogen Energy 45:29832–29847. https://doi.org/10.1016/j.ijhydene.2019.07.231

    Article  CAS  Google Scholar 

  128. Stein T, Ein-Eli Y (2020) Challenges and perspectives of metal-based proton exchange membrane’s bipolar plates: exploring durability and longevity. Energ Technol 8:2000007. https://doi.org/10.1002/ente.202000007

    Article  CAS  Google Scholar 

  129. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816. https://doi.org/10.1021/cr300367d

    Article  CAS  Google Scholar 

  130. Su DS, Schlögl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. Chemsuschem 3:136–168. https://doi.org/10.1002/cssc.200900182

    Article  CAS  Google Scholar 

  131. Su YL, Kao WH, Chang GY (2022) Tribological, anti-corrosion, and electrical conductivity properties of CrCx coatings deposited on stainless steel 316l and used as metal bipolar plates for fuel cells. J Materi Eng Perform. https://doi.org/10.1007/s11665-022-07333-y

    Article  Google Scholar 

  132. Suherman H, Sahari J, Sulong AB (2013) Effect of small-sized conductive filler on the properties of an epoxy composite for a bipolar plate in a PEMFC. Ceram Int 39:7159–7166. https://doi.org/10.1016/j.ceramint.2013.02.059

    Article  CAS  Google Scholar 

  133. Suherman H, Sulong AB, Sahari J (2013) Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram Int 39:1277–1284. https://doi.org/10.1016/j.ceramint.2012.07.059

    Article  CAS  Google Scholar 

  134. Sun Q, Zhang R, Qiu J, Liu R, Xu W (2018) On-surface synthesis of carbon nanostructures. Adv Mater 30:1705630. https://doi.org/10.1002/adma.201705630

    Article  CAS  Google Scholar 

  135. Suzuki T, Tsushima S, Hirai S (2013) Fabrication and performance evaluation of structurally-controlled PEMFC catalyst layers by blending platinum-supported and stand-alone carbon black. J Power Sour 233:269–276. https://doi.org/10.1016/j.jpowsour.2013.01.092

    Article  CAS  Google Scholar 

  136. Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V (2021) Proton exchange membrane fuel cells (PEMFCs): advances and challenges. Polymers 13:3064. https://doi.org/10.3390/polym13183064

    Article  CAS  Google Scholar 

  137. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5:351–372. https://doi.org/10.1016/j.nantod.2010.06.010

    Article  CAS  Google Scholar 

  138. Tian X, Lu XF, Xia BY, Lou (David) XW (2020) Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4:45–68. https://doi.org/10.1016/j.joule.2019.12.014

    Article  CAS  Google Scholar 

  139. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42. https://doi.org/10.1016/j.carbon.2014.04.005

    Article  CAS  Google Scholar 

  140. Tzelepis S, Kavadias KA, Marnellos GE, Xydis G (2021) A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renew Sustain Energy Rev 151:111543. https://doi.org/10.1016/j.rser.2021.111543

  141. Ul Hassan N, Tunaboylu B, Soydan AM (2019) A competitive design and material consideration for fabrication of polymer electrolyte membrane fuel cell bipolar plates. Designs 3:13. https://doi.org/10.3390/designs3010013

    Article  Google Scholar 

  142. Vul’ A, Shenderova O (2014) Detonation nanodiamonds: science and applications. Jenny Stanford Publishing, New York

    Book  Google Scholar 

  143. Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X (2016) Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies 9:603. https://doi.org/10.3390/en9080603

    Article  Google Scholar 

  144. Wang H, Yi H, Zhu C, Wang X, Jin Fan H (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669. https://doi.org/10.1016/j.nanoen.2015.03.033

    Article  CAS  Google Scholar 

  145. Wang J, Geng C, Luo F, Liu Y, Wang K, Fu Q, He B (2011) Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites. Mater Sci Eng, A 528:3169–3176. https://doi.org/10.1016/j.msea.2010.12.081

    Article  CAS  Google Scholar 

  146. Wang J, Li B, Yang D, Lv H, Zhang C (2018) Preparation of an octahedral PtNi/CNT catalyst and its application in high durability PEMFC cathodes. RSC Adv 8:18381–18387. https://doi.org/10.1039/C8RA02158A

    Article  CAS  Google Scholar 

  147. Wang L, Pumera M (2016) Electrochemical catalysis at low dimensional carbons: graphene, carbon nanotubes and beyond—a review. Appl Mater Today 5:134–141. https://doi.org/10.1016/j.apmt.2016.09.011

    Article  Google Scholar 

  148. Wang XX, Swihart MT, Wu G (2019) Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal 2:578–589. https://doi.org/10.1038/s41929-019-0304-9

    Article  CAS  Google Scholar 

  149. Wang Y, Pang Y, Xu H, Martinez A, Chen KS (2022) PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development—a review. Energy Environ Sci 15:2288–2328. https://doi.org/10.1039/D2EE00790H

    Article  CAS  Google Scholar 

  150. Wang Y, Shi H, Li J, Zhang W, Wu J (2022) Preparation and corrosion resistance of chromium carbide coating on graphite by disproportionation reaction in molten salt. J of Materi Eng and Perform. https://doi.org/10.1007/s11665-022-07600-y

    Article  Google Scholar 

  151. Wang Y, Wang D, Li Y (2021) A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2:56–75. https://doi.org/10.1002/smm2.1023

    Article  CAS  Google Scholar 

  152. Wang Z, Cao X, Ping J, Wang Y, Lin T, Huang X, Ma Q, Wang F, He C, Zhang H (2015) Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale 7:9394–9398. https://doi.org/10.1039/C4NR06631F

    Article  CAS  Google Scholar 

  153. Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X (2021) Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 122:101450. https://doi.org/10.1016/j.progpolymsci.2021.101450

  154. Watanabe M, Tryk DA (2019) The role of carbon blacks as catalyst supports and structural elements in polymer electrolyte fuel cells. In: Nakashima N (ed) Nanocarbons for energy conversion: supramolecular approaches, I. Springer International Publishing, Cham, pp 81–118

    Chapter  Google Scholar 

  155. Wei J, Ning F, Bai C, Zhang T, Lu G, Wang H, Li Y, Shen Y, Fu X, Li Q, Jin H, Zhou X (2020) An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells. J Mater Chem A 8:5986–5994. https://doi.org/10.1039/C9TA13944C

    Article  CAS  Google Scholar 

  156. Witpathomwong S, Okhawilai M, Jubsilp C, Karagiannidis P, Rimdusit S (2020) Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC. Int J Hydrogen Energy 45:30898–30910. https://doi.org/10.1016/j.ijhydene.2020.08.006

    Article  CAS  Google Scholar 

  157. Wlodarczyk R (2019) Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells—a review. Funct Mater Lett 12:1930001. https://doi.org/10.1142/S1793604719300019

    Article  CAS  Google Scholar 

  158. Wu D, Peng C, Yin C, Tang H (2020) Review of System Integration and Control of Proton Exchange Membrane Fuel Cells. Electrochem Energ Rev 3:466–505. https://doi.org/10.1007/s41918-020-00068-1

    Article  CAS  Google Scholar 

  159. Xiong K, Wu W, Wang S, Zhang L (2021) Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: a review. Appl Energy 301:117443. https://doi.org/10.1016/j.apenergy.2021.117443

  160. Xu M, Xue H, Wang Q, Jia L (2021) Sulfonated poly(arylene ether)s based proton exchange membranes for fuel cells. Int J Hydrogen Energy 46:31727–31753. https://doi.org/10.1016/j.ijhydene.2021.07.038

    Article  CAS  Google Scholar 

  161. Yakoumis I, Moschovi AM, Giannopoulou I, Panias D (2018) Real life experimental determination of platinum group metals content in automotive catalytic converters. IOP Conf Ser: Mater Sci Eng 329:012009. https://doi.org/10.1088/1757-899X/329/1/012009

  162. Yan Q-Q, Yin P, Liang H-W (2021) Engineering the electronic interaction between metals and carbon supports for oxygen/hydrogen electrocatalysis. ACS Materials Lett 3:1197–1212. https://doi.org/10.1021/acsmaterialslett.1c00266

    Article  CAS  Google Scholar 

  163. Yang K, Kas R, Smith WA, Burdyny T (2021) Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for Electrochemical CO2 reduction. ACS Energy Lett 6:33–40. https://doi.org/10.1021/acsenergylett.0c02184

    Article  CAS  Google Scholar 

  164. Yang W-H, Feng Y-X, Ke C-Y, Wang H-H (2019) The synthesis of Fe@CNT-Fe/N/C catalyst and application for oxygen reduction reaction on fuel cell. Fullerenes Nanotubes Carbon Nanostruct 27:961–966. https://doi.org/10.1080/1536383X.2019.1678148

    Article  CAS  Google Scholar 

  165. Yang Y, Wang Z, Mai Y, Guo C, Shi Y, Tan H, Lu Z, Shen L, Yan C (2021) Highly active PtCo nanoparticles on hierarchically ordered mesoporous carbon support for polymer electrolyte membrane fuel cells. J Mater Sci 56:13083–13095. https://doi.org/10.1007/s10853-021-06159-8

    Article  CAS  Google Scholar 

  166. Yang Y, Zhou X, Tang F, Li B, Ming P, Zhang C (2021) Failure behavior of gas diffusion layer in proton exchange membrane fuel cells. J Power Sour 515:230655. https://doi.org/10.1016/j.jpowsour.2021.230655

  167. Yang Z, Moriguchi I, Nakashima N (2015) Durable Pt electrocatalyst supported on a 3D nanoporous carbon shows high performance in a high-temperature polymer electrolyte fuel cell. ACS Appl Mater Interfaces 7:9800–9806. https://doi.org/10.1021/acsami.5b01724

    Article  CAS  Google Scholar 

  168. Yarar Kaplan B, Haghmoradi N, Jamil E, Merino C, Alkan Gürsel S (2020) Platinum nanoparticles decorated carbon nanofiber hybrids as highly active electrocatalysts for polymer electrolyte membrane fuel cells. Int J Energy Res 44:10251–10261. https://doi.org/10.1002/er.5646

    Article  CAS  Google Scholar 

  169. Yarar Kaplan B, Işıkel Şanlı L, Alkan Gürsel S (2017) Flexible carbon–cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells. J Mater Sci 52:4968–4976. https://doi.org/10.1007/s10853-016-0734-6

    Article  CAS  Google Scholar 

  170. Ye X, Qi M, Chen M, Zhang L, Zhang J (2023) Zero to three dimension structure evolution from carbon allotropes to phosphorus allotropes. Adv Mater Interfaces 10:2201941. https://doi.org/10.1002/admi.202201941

    Article  CAS  Google Scholar 

  171. Yeon JH, Park SJ, Choi I, Choi M (2019) Generation of carbon nano-onions by laser irradiation of gaseous hydrocarbons for high durability catalyst support in proton exchange membrane fuel cells. J Ind Eng Chem 80:65–73. https://doi.org/10.1016/j.jiec.2019.07.032

    Article  CAS  Google Scholar 

  172. Yoo E, Okada T, Akita T, Kohyama M, Honma I, Nakamura J (2011) Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J Power Sour 196:110–115. https://doi.org/10.1016/j.jpowsour.2010.07.024

    Article  CAS  Google Scholar 

  173. Zamel N (2016) The catalyst layer and its dimensionality—a look into its ingredients and how to characterize their effects. J Power Sour 309:141–159. https://doi.org/10.1016/j.jpowsour.2016.01.091

    Article  CAS  Google Scholar 

  174. Zannotti M, Giovannetti R, D’Amato CA, Rommozzi E (2016) Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface. Spectrochim Acta Part A Mol Biomol Spectrosc 153:22–29. https://doi.org/10.1016/j.saa.2015.07.111

    Article  CAS  Google Scholar 

  175. Zeis R (2015) Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein J Nanotechnol 6:68–83. https://doi.org/10.3762/bjnano.6.8

    Article  CAS  Google Scholar 

  176. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4:1700187. https://doi.org/10.1002/advs.201700187

    Article  CAS  Google Scholar 

  177. Zhang C, Wang Y-C, An B, Huang R, Wang C, Zhou Z, Lin W (2017) Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells. Adv Mater 29:1604556. https://doi.org/10.1002/adma.201604556

    Article  CAS  Google Scholar 

  178. Zhang H, Haas H, Hu J, Kundu S, Davis M, Chuy C (2013) The impact of potential cycling on PEMFC durability. J Electrochem Soc 160:F840. https://doi.org/10.1149/2.083308jes

    Article  CAS  Google Scholar 

  179. Zhang J, Zhu W, Huang T, Zheng C, Pei Y, Shen G, Nie Z, Xiao D, Yin Y, Guiver MD (2021) Recent insights on catalyst layers for anion exchange membrane fuel cells. Advanced Science 8:2100284. https://doi.org/10.1002/advs.202100284

    Article  CAS  Google Scholar 

  180. Zhang Y, Li J, Ma L, Cai W, Cheng H (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energ Technol 3:675–691. https://doi.org/10.1002/ente.201500028

    Article  CAS  Google Scholar 

  181. Zhao G, Chen J, Sun W, Pan H (2021) Non-platinum group metal electrocatalysts toward efficient hydrogen oxidation reaction. Adv Func Mater 31:2010633. https://doi.org/10.1002/adfm.202010633

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were equally involved in the manuscript’s concept, design, and writing. The preparation of the materials, the data collection, and the data analysis were performed by DKM, TP, RK, MT, and AJ. IC has supervised and modified the manuscript based on the comments and discussions. DKM wrote the first draft of the manuscript, which was reviewed and commented on by all the authors throughout the revision process. The final manuscript was read and approved by all the authors.

Corresponding author

Correspondence to Ram Krishna.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. There is no evidence that the authors have any competing financial interests or personal relationships that could have influenced the results reported in this paper in a manner that may have appeared biased.

Ethical approval

No human participants are involved in this research; therefore, no ethical approval is needed.

Consent to participate

I consent to participate in the research project, and the following has been explained to me: the research may not directly benefit me, but my participation is entirely voluntary.

Consent to publish

I, the undersigned, give my consent for the publication of identifiable details, which can include a photograph(s) and videos and/or case history and/or details within the text (“Material”) to be published in this article.

Dr. Ram Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madheswaran, D.K., Thangavelu, P., Krishna, R. et al. Carbon-based materials in proton exchange membrane fuel cells: a critical review on performance and application. Carbon Lett. 33, 1495–1518 (2023). https://doi.org/10.1007/s42823-023-00526-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00526-y

Keywords

Navigation