Skip to main content
Log in

Polymeric carbon nitrides produced from different gaseous conditions and their photocatalytic performance for degrading organic pollutants

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used in the current study are available from the corresponding author on reasonable request.

References

  1. Ong W-J, Shak KPY (2020) 2D/2D heterostructured photocatalysts: an emerging platform for artificial photosynthesis. Sol RRL 4:2000132. https://doi.org/10.1002/solr.202000132

    Article  CAS  Google Scholar 

  2. Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu H, Lu J (2019) Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew Chem Int Ed 58:2073–2077. https://doi.org/10.1002/anie.201813417

    Article  CAS  Google Scholar 

  3. Li X, Kang B, Dong F, Zhang Z, Luo X, Han L, Huang J, Feng Z, Chen Z, Xu J (2021) Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2. 72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 81:105671. https://doi.org/10.1016/j.nanoen.2020.105671

    Article  CAS  Google Scholar 

  4. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. https://doi.org/10.1021/cr1001645

    Article  CAS  Google Scholar 

  5. Djurišić AB, He Y, Ng AM (2020) Visible-light photocatalysts: prospects and challenges. APL Mater 8:30903. https://doi.org/10.1063/1.5140497

    Article  CAS  Google Scholar 

  6. Zhang Q, Jiang L, Wang J, Zhu Y, Pu Y, Dai W (2020) Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl Catal B Environ 277:119122. https://doi.org/10.1016/j.apcatb.2020.119122

    Article  CAS  Google Scholar 

  7. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1901997. https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  8. Zhang M, Lai C, Li B, Xu F, Huang D, Liu S, Qin L, Fu Y, Liu X, Yi H (2020) Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation. Chem Eng J 396:125343. https://doi.org/10.1016/j.cej.2020.125343

    Article  CAS  Google Scholar 

  9. Jung H, Whang Y, Han SW (2021) Ag-CdS yolk–shell heteronanostructures for plasmon-enhanced photocatalysis. Bull Korean Chem Soc 42:806–809. https://doi.org/10.1002/bkcs.12270

    Article  CAS  Google Scholar 

  10. Gupta G, Kim M, Lee J, Lee CY (2021) Zinc-based metal organic framework derived from anthracene and BODIPY chromophores: synthesis and photophysical properties. Bull Korean Chem Soc 42:645–648. https://doi.org/10.1002/bkcs.12269

    Article  CAS  Google Scholar 

  11. Wang CW, Orrison C, Son DH (2022) Hot electrons generated from Mn-doped quantum dots via upconversion for photocatalysis applications. Bull Korean Chem Soc 43:492–500. https://doi.org/10.1002/bkcs.12487

    Article  CAS  Google Scholar 

  12. Ou H, Ning S, Zhu P, Chen S, Han A, Kang Q, Hu Z, Ye J, Wang D, Li Y (2022) Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew Chem 134:e2022. https://doi.org/10.1002/ange.202206579

    Article  Google Scholar 

  13. Cheng C, Shi J, Wen L, Dong C-L, Huang Y-C, Zhang Y, Zong S, Diao Z, Shen S, Guo L (2021) Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon 181:193–203. https://doi.org/10.1016/j.carbon.2021.05.030

    Article  CAS  Google Scholar 

  14. Lee S, Shin EY, Jang D, Choi S, Park H, Kim J, Park S (2022) Production of mesoporous carbon nitrides and their photocatalytic properties for degradation of organic pollutants. Bull Korean Chem Soc 43:1124–1129. https://doi.org/10.1002/bkcs.12596

    Article  CAS  Google Scholar 

  15. Audebert P, Kroke E, Posern C, Lee S-H (2021) State of the art in the preparation and properties of molecular monomeric s-heptazines: syntheses, characteristics, and functional applications. Chem Rev 121:2515–2544. https://doi.org/10.1021/acs.chemrev.0c00955

    Article  CAS  Google Scholar 

  16. Kessler FK, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X, Bojdys MJ (2017) Functional carbon nitride materials—design strategies for electrochemical devices. Nat Rev Mater 2:1–17. https://doi.org/10.1038/natrevmats.2017.30

    Article  CAS  Google Scholar 

  17. Nguyen TKA, Pham T-T, Nguyen-Phu H, Shin EW (2021) The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts. Appl Surf Sci 537:148027. https://doi.org/10.1016/j.apsusc.2020.148027

    Article  CAS  Google Scholar 

  18. Park S, Kim Y-H, Kang S, Lim D, Park J, Jang D, Choi S, Kim J, Han S, Lee T-W (2021) Production of C, N alternating 2D materials using covalent modification and their electroluminescence performance. Small Sci 1:2000042. https://doi.org/10.1002/smsc.202000042

    Article  CAS  Google Scholar 

  19. Liu S, Wang Z, Lu Y, Li H, Chen X, Wei G, Wu T, Maguire D-J, Ye G, Chen J (2021) Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Appl Catal B: Environ 282:119523. https://doi.org/10.1016/j.apcatb.2020.119523

    Article  CAS  Google Scholar 

  20. Oh J, Shim Y, Lee S, Park S, Jang D, Shin Y, Ohn S, Kim J, Park S (2018) Structural insights into photocatalytic performance of carbon nitrides for degradation of organic pollutants. J Solid State Chem 258:559–565. https://doi.org/10.1016/j.jssc.2017.11.026

    Article  CAS  Google Scholar 

  21. Baek DS, Joo SH (2022) Non-siliceous ordered mesoporous materials via nanocasting for small molecule conversion electrocatalysis. Bull Korean Chem Soc 43:1156–1168. https://doi.org/10.1002/bkcs.12607

    Article  CAS  Google Scholar 

  22. Zhang G, Liu M, Heil T, Zafeiratos S, Savateev A, Antonietti M, Wang X (2019) Electron deficient monomers that optimize nucleation and enhance the photocatalytic redox activity of carbon nitrides. Angew Chem 131:15092–15096. https://doi.org/10.1002/ange.201908322

    Article  Google Scholar 

  23. Saka C (2022) Facile fabrication of P-doped g-C3N4 particles with nitrogen vacancies for efficient dehydrogenation of sodium borohydride methanolysis. Fuel 313:122688. https://doi.org/10.1016/j.fuel.2021.122688

    Article  CAS  Google Scholar 

  24. Kang Y, Yang Y, Yin LC, Kang X, Wang L, Liu G, Cheng HM (2016) Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv Mater 28:6471–6477. https://doi.org/10.1002/adma.201601567

    Article  CAS  Google Scholar 

  25. Oh J, Lee JM, Yoo Y, Kim J, Hwang S-J, Park S (2017) New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties. Appl Catal B: Environ 218:349–358. https://doi.org/10.1016/j.apcatb.2017.06.067

    Article  CAS  Google Scholar 

  26. Jang D, Choi S, Kwon NH, Jang KY, Lee S, Lee T-W, Hwang S-J, Kim H, Kim J, Park S (2022) Water-assisted formation of amine-bridged carbon nitride: a structural insight into the photocatalytic performance for H2 evolution under visible light. Appl Catal B: Environ 310:121313. https://doi.org/10.1016/j.apcatb.2022.121313

    Article  CAS  Google Scholar 

  27. Jiménez-Calvo P, Marchal C, Cottineau T, Caps V, Keller V (2019) Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites. J Mater Chem A 7:14849–14863. https://doi.org/10.1039/C9TA01734H

    Article  Google Scholar 

  28. Xu L, Zhang J, Ding J, Liu T, Shi G, Li X, Dang W, Cheng Y, Guo R (2020) Pore structure and fractal characteristics of different shale lithofacies in the dalong formation in the western area of the lower yangtze platform. Minerals 10:72. https://doi.org/10.3390/min10010072

    Article  CAS  Google Scholar 

  29. Zhou B-X, Ding S-S, Zhang B-J, Xu L, Chen R-S, Luo L, Huang W-Q, Xie Z, Pan A, Huang G-F (2019) Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Appl Catal B: Environ 254:321–328. https://doi.org/10.1016/j.apcatb.2019.05.015

    Article  CAS  Google Scholar 

  30. Kim H, Jang D, Choi S, Kim J, Park S (2021) Acid-activated carbon nitrides as photocatalysts for degrading organic pollutants under visible light. Chemosphere 273:129731. https://doi.org/10.1016/j.chemosphere.2021.129731

    Article  CAS  Google Scholar 

  31. Kim H, Lim D, Kwon NH, Son S, Choi S, Kim J, Hwang S-J, Park S (2020) Dramatic change of morphological, photophysical, and photocatalytic H2 evolution properties of C3N4 materials by the removal of carbon impurities. ACS Appl Energy Mater 3:4812–4820. https://doi.org/10.1021/acsaem.0c00419

    Article  CAS  Google Scholar 

  32. Jang D, Ahn H, Oh J, Lim D, Kim CH, Choi S, Kim YH, Park J, Jang KY, Yoo RJ (2020) Production of metal-free C, N alternating nanoplatelets and their In vivo fluorescence imaging performance without labeling. Adv Funct Mater 30:2004800. https://doi.org/10.1002/adfm.202004800

    Article  CAS  Google Scholar 

  33. An S, Zhang G, Li K, Huang Z, Wang X, Guo Y, Hou J, Song C, Guo X (2021) Self-supporting 3D carbon nitride with tunable n → π* electronic transition for enhanced solar hydrogen production. Adv Mater 33:2104361. https://doi.org/10.1002/adma.202104361

    Article  CAS  Google Scholar 

  34. Hu S, Jiang D, Gu L, Xu G, Li Z, Yuan Y (2020) Awakening n → π* electronic transition by breaking hydrogen bonds in graphitic carbon nitride for increased photocatalytic hydrogen generation. Chem Eng J 399:125847. https://doi.org/10.1016/j.cej.2020.125847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant. We thank the Busan Center at the Korea Basic Science Institute (KBSI) for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungjin Park.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, D., Jeon, S., Shin, E.Y. et al. Polymeric carbon nitrides produced from different gaseous conditions and their photocatalytic performance for degrading organic pollutants. Carbon Lett. 33, 803–809 (2023). https://doi.org/10.1007/s42823-023-00461-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00461-y

Keywords

Navigation