Skip to main content

Advertisement

Log in

Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The emergence of Mo2C-based catalysts in recent years has been favored as promising contender within diverse class MXenes. In terms of rapid development in the photocatalytic application, these intriguing compounds exhibit excellent photocatalytic performance because of their superior optical properties and peculiar structure characteristics. Unfortunately, a systematic review of Mo2C-based catalysts is lacking. In this review, we abstract the implication of structure—property relationship of emerging Mo2C-based MXenes materials and their applications toward the photocatalytic hydrogen evolution reaction (HER). Furthermore, synthetic pathways to prepare high-quality, low cost Mo2C-based MXenes materials and their outcomes for high HER applications are systematically described. Finally, several insights are provided into the prospects and future challenges for the development of highly reactive Mo2C-based MXenes materials, which present large range opportunities in this promising 2D materials for green and clean energy in environmental fields. This review provides a comprehensive scientific guide to the preparation, modification, and photocatalytic HER of MXenes-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2005, American Chemical Society. d SEM of flowers-like Mo2C [27]. Reprinted with permission. Copyright 2022, Elsevier. e SEM of rod-like Mo2C [28]. Reprinted with permission. Copyright 2013, the Royal Society of Chemistry. f Schematic showing synthesis from Mo2Ga2C to Mo2C [32]. Reprinted with permission. Copyright 2016, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Copyright 2019, Elsevier. c ΔGH profile of photocatalytic HER on different Mo-catalysts [35]. Reprinted with permission. Copyright 2016, Macmillan Publishers. d Mechanism of photocatalytic HER. e Comparison of photocatalytic HER reaction for water splitting and degradation

Fig. 4

Copyright 2019, Elsevier. d FTIR intensity of the adsorbed water molecules on the bare and metal-doped Mo2C and e Photocatalytic HER rates of Mo2C doping metals (Fe, Co, Ni, and Cu) [39]. Reprinted with permission. Copyright 2021, Elsevier. f Schematic illustration of the synthesis procedures of Co (Mo-Mo2C)/g-C3N4 photocatalyst and g TEM of Co (Mo-Mo2C)/g-C3N4 and h Photocatalytic hydrogen evolution rates of Mo2C-based samples [40]. Reprinted with permission. Copyright 2020, Elsevier

Fig. 5

Copyright 2017, Royal Society of Chemistry. c Calculated potential energy diagram on Pt/Mo2C [57]. Reprinted with permission. Copyright 2017, Royal Society of Chemistry. d Synthetic process of CdS/Pt/Mo2C heterostructure and e Photocatalytic HER mechanism of CdS/Pt/Mo2C and f Photocatalytic hydrogen evolution rates of different samples [41]. Reprinted with permission. Copyright 2018, Royal Society of Chemistry. g TEM of Mo2C-Au–Pd [58]. Reprinted with permission. Copyright 2016, Royal Society of Chemistry

Fig. 6

Copyright 2013, the royal society of chemistry. f Photocatalytic hydrogen evolution rates of different samples and g Photocatalysis mechanism of TiO2/rGO-Mo2C [43]. Reprinted with permission. Copyright 2021, American Chemical Society. h element mapping images of Mo and i TEM of SrTiO3@Mo2C and j Photocatalytic hydrogen evolution rates of different Mo2C-based samples [44]. Reprinted with permission. Copyright 2018, Elsevier. k TEM of CdS/Mo2C@C and l element mapping images of CdS/Mo2C@C and m H2 evolution rates on CdS/Mo2C@C [45]. Reprinted with permission. Copyright 2017, American Chemical Society

Fig. 7

Similar content being viewed by others

References

  1. Zou J, Wu J, Wang Y, Deng F, Jiang J, Zhang Y, Liu S, Li N, Zhang H, Yu J, Zhai T, Alshareef HN (2022) Additive-mediated intercalation and surface modification of MXenes. Chem Soc Rev 51:2972–2990. https://doi.org/10.1039/D0CS01487G

    Article  CAS  Google Scholar 

  2. Li F, Jiang J, Wang J, Zou J, Sun W, Wang H, Xiang K, Wu P, Hsu J-P (2022) Porous 3D carbon-based materials: an emerging platform for efficient hydrogen production. Nano Res. https://doi.org/10.1007/s12274-022-4799-z (In press)

    Article  Google Scholar 

  3. Jiang J, Li F, Zou J, Liu S, Wang J, Xiang K, Zhang H, Zhang Y, Fu X, Hsu J-P (2022) Three-dimensional MXenes heterostructures and their applications. Sci China Mater. https://doi.org/10.1007/s40843-022-2186-0 (In press)

    Article  Google Scholar 

  4. Jiang J, Bai S, Yang M, Zou J, Li N, Peng J, Wang H, Xiang K, Liu S, Zhai T (2022) Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency electrocatalytic hydrogen evolution. Nano Res 15:5977–5986. https://doi.org/10.1007/s12274-022-4276-8

    Article  CAS  Google Scholar 

  5. Bai S, Yang M, Jiang J, He X, Zou J, Xiong Z, Liao G, Liu S (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater Appl 5:78. https://doi.org/10.1038/s41699-021-00259-4

    Article  CAS  Google Scholar 

  6. Jiang J, Bai S, Zou J, Liu S, Hsu J-P, Li N, Zhu G, Zhuang Z, Kang Q, Zhang Y (2022) Improving stability of MXenes. Nano Res 15:6551–6567. https://doi.org/10.1007/s12274-022-4312-8

    Article  CAS  Google Scholar 

  7. Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Zou X (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed 127:10902–10907. https://doi.org/10.1002/ange.201583761

    Article  Google Scholar 

  8. Du J, Wu J, Guo T, Zhao R, Li J (2014) Catalytic performance of Mo2C supported on onion-like carbon for dehydrogenation of cyclohexane. RSC Adv 4:53950. https://doi.org/10.1039/c4ra08238a

    Article  CAS  Google Scholar 

  9. Liang P, Gao H, Yao Z, Jia R, Shi Y, Sun Y, Fan Q, Wang H (2017) Simple synthesis of ultrasmall β-Mo2C and α-MoC1-x nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane. Catal Sci Technol 7:3312. https://doi.org/10.1039/C7CY00708F

    Article  CAS  Google Scholar 

  10. Halasi G, Bánsági T, Varga E, Solymosi F (2015) Photocatalytic decomposition of formic acid on Mo2C-containing catalyst. Catal Lett 145:875–880. https://doi.org/10.1007/s10562-015-1494-7

    Article  CAS  Google Scholar 

  11. Liu G, Zhu J, Guo H, Sun A, Chen P, Xi L, Huang W, Song X, Dong X (2019) Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew Chem Int Ed 58:18641–18646. https://doi.org/10.1002/ange.201910815

    Article  CAS  Google Scholar 

  12. Zhang J, Dong S (2017) Superconductivity of monolayer Mo2C: the key role of functional groups. J Chem Phys 146:03470. https://doi.org/10.1063/1.4974085

    Article  CAS  Google Scholar 

  13. Ding B, Ong W-J, Jiang J, Chen X, Li N (2020) Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C (M=Ti, Mo) MXenes. Appl Surf Sci 500:143987. https://doi.org/10.1016/j.apsusc.2019.143987

    Article  CAS  Google Scholar 

  14. Haines J, Léger JM, Chateau C, Lowther JE (2001) Experimental and theoretical investigation of Mo2C at high pressure. J Phys: Condens Mat 13:2447–2454. https://doi.org/10.1088/0953-8984/13/11/303

    Article  CAS  Google Scholar 

  15. Huang K, Bi K, Liang C, Lin S, Wang WJ, Yang TZ, Liu J, Zhang R, Fan DY, Wang YG, Lei M (2015) Graphite carbon-supported Mo2C nanocomposites by a single-step solid state reaction for electrochemical oxygen reduction. PLoS ONE 10:e0138330. https://doi.org/10.1371/journal.pone.0138330

    Article  CAS  Google Scholar 

  16. Jeon J, Choi H, Choi S, Park JH, Lee BH, Hwang E, Lee S (2019) Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv Funct Mater 29:190538. https://doi.org/10.1002/adfm.201905384

    Article  CAS  Google Scholar 

  17. Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477–1498. https://doi.org/10.1021/cr950232u

    Article  CAS  Google Scholar 

  18. Khazaei M, Arai M, Sasaki T, Chung CY, Venkataramanan NS, Estili M, Sakka Y, KawazoeY Y (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23:2185–2192. https://doi.org/10.1002/adfm.201202502

    Article  CAS  Google Scholar 

  19. Jiang J, Zou Y, Arramel LF, Wang J, Zou J, Li N (2021) Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J Mater Chem A 9:24195–24214. https://doi.org/10.1039/D1TA07332J

    Article  CAS  Google Scholar 

  20. Li N, Peng J, Ong W-J, Ma T, Arramel ZP, Jiang J, Yuan X, Zhang C (2021) MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4:377–407. https://doi.org/10.1016/j.matt.2020.10.024

    Article  CAS  Google Scholar 

  21. Hiroyuki T, Masatoshi N (2005) Density functional theory of water-gas shift reaction on molybdenum carbide. J Phys Chem B 109:20415–20423. https://doi.org/10.1021/jp053706u

    Article  CAS  Google Scholar 

  22. Politi JRS, Viñes F, Rodriguez JA, Illas F (2013) Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Phys Chem Chem Phys 15:12617. https://doi.org/10.1039/c3cp51389k

    Article  CAS  Google Scholar 

  23. Calais JL (1997) Band structure of transition metal compounds. Adv Phys 26:847–885. https://doi.org/10.1080/00018737700101473

    Article  Google Scholar 

  24. Neckel A (1983) Recent investigations on the electronic structure of the fourth and fifth-group transition metal monocarbides, mononitrides, and monoxides. Int J Quantum Chem 23:1317–1353. https://doi.org/10.1002/qua.560230420

    Article  CAS  Google Scholar 

  25. Alexander AM, Hargreaves JS (2010) Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys. Chem Soc Rev 39:4388–4401. https://doi.org/10.1039/b916787k

    Article  CAS  Google Scholar 

  26. Wu M, Lin X, Hagfeldt A, Ma T (2011) Low-cost molybdenum carbide and tungstencarbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50:3520–3524. https://doi.org/10.1002/anie.201006635

    Article  CAS  Google Scholar 

  27. Gong S, Niu Y, Teng X, Liu X, Xu M, Xu C, Meyer TJ, Chen Z (2020) Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering. Appl Catal B: Environ 310:121333. https://doi.org/10.1016/j.apcatb.2022.121333

    Article  CAS  Google Scholar 

  28. Bai Y, Zhao J, Feng S, Liang X, Wang C (2013) Light-driven thermocatalytic CO2 reduction over surface passivated β-Mo2C nanowires: enhanced catalytic stability by light. Chem Commun 55:4651–4654. https://doi.org/10.1039/c9cc01479a

    Article  CAS  Google Scholar 

  29. Najafi L, Bellani S, Oropesa-Nuñez R, Prato M, Martín-García B, Brescia R, Bonaccorso F (2019) Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting. ACS Nano 13:3162–3176. https://doi.org/10.1021/acsnano.8b08670

    Article  CAS  Google Scholar 

  30. Prchlik L, Gutleber J, Sampath S (2001) Deposition and properties of high-velocity-oxygen-fuel and plasma-sprayed Mo-Mo2C composite coatings. J Therm Spray Techn 10:643–655. https://doi.org/10.1361/105996301770349178

    Article  CAS  Google Scholar 

  31. Patt J, Moon DJ, Phillips C, Thompson L (2000) Molybdenum carbide catalysts for water-gas shift. Catal Lett 65:193–195. https://doi.org/10.1023/A:1019098112056

    Article  CAS  Google Scholar 

  32. Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao MQ, Moon EJ, Pitock J, Nanda J, May SJ, Gogotsi Y, Barsoum MW (2016) Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater 26:3118–3127. https://doi.org/10.1002/adfm.201505328

    Article  CAS  Google Scholar 

  33. Cheng H, Ding LX, Chen GF, Zhang L, Xue J, Wang H (2008) Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater 30:e1803694. https://doi.org/10.1002/adma.201803694

    Article  CAS  Google Scholar 

  34. Zhan X, Wang J, Guo T, Liu T, Wu Z, Cavallo L, Cao Z, Wang D (2019) Structure and phase regulation in MoxC (α-MoC1-x/β-Mo2C) to enhance hydrogen evolution. Apppl Catal B: Environ 247:78–85. https://doi.org/10.1016/j.apcatb.2019.01.086

    Article  CAS  Google Scholar 

  35. Zhang H, Ma Z, Liu G, Shi L, Tang J, Pang H, Wu K, Takei T, Zhang J, Yamauchi Y, Ye J (2016) Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Mater 8:e293. https://doi.org/10.1038/am.2016.102

    Article  CAS  Google Scholar 

  36. Zhou Y, Wang W, Zhang C, Huang D, Lai C, Cheng M, Qin L, Yang Y, Zhou C, Li B, Luo H, He D (2019) Sustainable HER by molybdenum carbide-based efficient photocatalysts: from properties to mechanism. Adv Colloid Interfaces 279:102144. https://doi.org/10.1016/j.cis.2020.102144

    Article  CAS  Google Scholar 

  37. Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for HER—a review. Renew Sustain Energ Rev 75:1101–1129. https://doi.org/10.1016/j.rser.2016.11.092

    Article  CAS  Google Scholar 

  38. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  CAS  Google Scholar 

  39. Liu J, Hodes G, Yan J, Liu S (2021) Metal-doped Mo2C (metal = Fe Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution. Chin J Catal 42:205–216. https://doi.org/10.1016/S1872-2067(20)63589-6

    Article  CAS  Google Scholar 

  40. Zheng Y, Dong J, Huang C, Xia L, Wu Q, Xu Q, Yao W (2020) Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution. Appl Catal B: Environ 260:118220. https://doi.org/10.1016/j.apcatb.2019.118220

    Article  CAS  Google Scholar 

  41. Jing X, Peng X, Cao Y, Wang W, Wang S (2018) Enhanced photocarriers separation of novel CdS/Pt/Mo2C heterostructure for visible-light-driven hydrogen evolution. RSC Adv 8:33993–33999. https://doi.org/10.1039/C8RA05473H

    Article  CAS  Google Scholar 

  42. Yue X, Yi S, Wang R, Zhang Z, Qiu S (2017) A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic HER from water splitting. J Mater Chem A 5:10591–10598. https://doi.org/10.1039/C7TA02655B

    Article  CAS  Google Scholar 

  43. Liu J, Wang P, Fan J, Yu H, Yu J (2021) In situ synthesis of Mo2C nanoparticles on graphene nanosheets for enhanced photocatalytic H2-production activity of TiO2. ACS Sustain Chem Eng 9:3828–3837. https://doi.org/10.1007/s12274-020-3156-3

    Article  CAS  Google Scholar 

  44. Yue X, Yi S, Wang R, Zhang Z, Qiu S (2018) Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 47:463–473. https://doi.org/10.1016/j.nanoen.2018.03.014

    Article  CAS  Google Scholar 

  45. Pan YX, Peng JB, Xin S, You Y, Men YL, Zhang F, Duan MY, Cui Y, Sun ZQ, Song J (2017) Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@C nanospheres. ACS Sustain Chem Eng 5:5449–5456. https://doi.org/10.1021/acssuschemeng.7b00787

    Article  CAS  Google Scholar 

  46. Yang F, Liu D, Li Y, Cheng L, Ye J (2020) Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. Chem Eng J 399:125794. https://doi.org/10.1016/j.cej.2020.125794

    Article  CAS  Google Scholar 

  47. Dong Y, Shi Y, Huang C, Wu Q, Zeng T, Yao W (2019) A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl Catal B: Environ 243:27–35. https://doi.org/10.1016/j.apcatb.2018.10.016

    Article  CAS  Google Scholar 

  48. Sudrajat H (2017) A one-pot, solid-state route for realizing highly visible light active Na-doped gC3N4 photocatalysts. J Solid State Chem 257:26–33. https://doi.org/10.1016/j.jssc.2017.09.024

    Article  CAS  Google Scholar 

  49. Tang Y, Yang C, Xu X, Kang Y, Henzie J, Que W, Yamauchi Y (2022) MXene nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv Energy Mater 12:2103867. https://doi.org/10.1002/aenm.202103867

    Article  CAS  Google Scholar 

  50. Liu B, Wang X, Cai G, Wen L, Song Y, Zhao X (2009) Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. J Hazard Mater 169:l112-1118. https://doi.org/10.1016/j.jhazmat.2009.04.068

    Article  CAS  Google Scholar 

  51. Hu Z, Huang J, Luo Y, Liu M, Li X, Yan M, Ye Z, Chen Z, Feng Z, Huang S (2019) Wrinkled Ni-doped Mo2C coating on carbon fiber paper: an advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochim Acta 319:293–301. https://doi.org/10.1016/j.electacta.2019.06.178

    Article  CAS  Google Scholar 

  52. Li YH, Li JY, Xu YJ (2021) Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. Energy Chem 3:100047. https://doi.org/10.1016/j.enchem.2020.100047

    Article  CAS  Google Scholar 

  53. Razaa A, Qumarb U, Rafic AA, Ikramb M (2022) MXene-based nanocomposites for solar energy harvesting. Sustain Mater Techno 33:e00462. https://doi.org/10.1016/j.susmat.2022.e00462

    Article  CAS  Google Scholar 

  54. Xia C, Wang H, Kim JK, Wang J (2021) Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv Funct Mater 31:2008247. https://doi.org/10.1002/adfm.202008247

    Article  CAS  Google Scholar 

  55. Liu G, Du K, Xu J, Chen G, Gu M, Yang C, Wang K, Jakobsen H (2017) Plasmon-dominated photoelectrodes for solar water splitting. J Mater Chem A 5:4233–4253. https://doi.org/10.1039/C6TA10471A

    Article  CAS  Google Scholar 

  56. Luo L, Li D, Dang Y, Wang W, Yu G, Li J, Ma B (2022) Capacitance catalysis: positive and negative effects of capacitance of Mo2C in photocatalytic H2 evolution. ACS Sustainable Chem Eng 10:5949–5957. https://doi.org/10.1021/acssuschemeng.2c00360

    Article  CAS  Google Scholar 

  57. Li Q, Ma Z, Sa R, Adidharma H, Gasem KAM, Russell AG, Fan M, Wu K (2017) Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@Mo2C-an important advanced material for H2 production. J Mater Chem A 5:14658–14672. https://doi.org/10.1039/C7TA03115G

    Article  CAS  Google Scholar 

  58. Wang X, Perret N, Delannoy L, Louis C, Keane MA (2016) Selective gas phase hydrogenation of nitroarenes over Mo2C-supported Au-Pd. Catal Sci Technol 6:6932. https://doi.org/10.1039/C6CY00514D

    Article  CAS  Google Scholar 

  59. Feng W, Lei Y, Wu X, Yuan J, Chen J, Xu D, Zhang X, Zhang S, Liu P, Zhang L, Weng B (2021) Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H2 evolution. J Mater Chem A 9:1759. https://doi.org/10.1039/d0ta09217g

    Article  CAS  Google Scholar 

  60. Liu YL, Wu JM (2019) Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy 56:74–81. https://doi.org/10.1016/j.nanoen.2018.11.028

    Article  CAS  Google Scholar 

  61. Peng J, Chen X, Ong WJ, Zhao X, Li N (2019) Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5:18–50. https://doi.org/10.1016/j.chempr.2018.08.037

    Article  CAS  Google Scholar 

  62. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting: A critical review. Energy Environ Sci 8:731–759. https://doi.org/10.1039/C4EE03271C

    Article  CAS  Google Scholar 

  63. Mistry K, Jalja, Lakhani R, Tripathi B, Shinde S, Chandra P (2022) Recent trends in MXene/Metal chalcogenides for electro-/photocatalytic hydrogen evolution reactions. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.02.049

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62004143), the Key R&D Program of Hubei Province (Grant No. 2022BAA084), the Central Government Guided Local Science and Technology Development Special Fund Project (Grant No. 2020ZYYD033), and the Innovation Project of Hubei Three Gorges Laboratory (Grant No. SC213009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Qin, Jizhou Jiang or Arramel.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Qin, Q., Li, F. et al. Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. 33, 1381–1394 (2023). https://doi.org/10.1007/s42823-022-00401-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00401-2

Keywords

Navigation