Skip to main content

Advertisement

Log in

Study on high-pressure behaviour of spherical carbon black nanoparticles with core–shell structure

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We report the behaviour of carbon black (CB) nanoparticles (spherical carbon shells), subjected to external pressure, using diamond anvil cell at synchrotron facility. CB nanoparticles have been synthesized by lamp black method using olive oil as combustion precursor and ferrocene as an organometallic additive. The catalyst-assisted CB has an iron oxide (γ-Fe2O3) core and amorphous carbon shell (i.e. core–shell structure). Our present study suggests that the carbon shells are partially transparent to the applied high pressure, and result in the reduction of effective pressure that gets transferred to the iron oxide core. High-pressure Raman spectroscopy results indicate that the surrounding carbon shells get compressed with pressure and this change is reversible. However, no structural transformation was observed till the highest applied pressure (25 GPa). The Raman spectroscopy results also suggests that the carbon shells are less pressure sensitive as their pressure coefficients (dω/dP) of G-peak were calculated (3.79 cm−1/GPa) to be less than that for other carbon allotropes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddy SS, Sinha AK, Amarendra G, Shekar NVC, Bhalerao GM (2020) Enhancement of graphitic order in carbon black using precursor additive. Diam Relat Mater 101:107539. https://doi.org/10.1016/j.diamond.2019.107539

    Article  CAS  Google Scholar 

  2. Darmstadt H, Roy C (2001) Comparative investigation of defects on carbon black surfaces by nitrogen adsorption and SIMS. Carbon 39:841–848. https://doi.org/10.1016/S0008-6223(00)00205-0

    Article  CAS  Google Scholar 

  3. Islam I, Sultana S, Kumer Ray S, Parvin Nur H, Hossain MT, Ajmotgir WMd (2018) Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C 4:15. https://doi.org/10.3390/c4010015.

  4. Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas J (2001) Influence of carbon black and binder on Li-ion batteries. J Power Sour 101:1–9. https://doi.org/10.1016/S0378-7753(01)00481-5

    Article  CAS  Google Scholar 

  5. Poswal HK, Karmakar S, Tyagi PK, Misra DS, Busetto E, Sharma SM, Sood AK (2007) High-pressure behavior of Ni-filled and Fe-filled multiwalled carbon nanotubes. Phys Status Solidi B 244:3612–3619. https://doi.org/10.1002/pssb.200642608

    Article  CAS  Google Scholar 

  6. Yadav PK, Kumar M, Gupta RK, Sinha M, Chakera JA, Modi MH (2019) Refurbishment of an Au-coated toroidal mirror by capacitively coupled RF plasma discharge. J Synchrotron Rad 26:1152–1160. https://doi.org/10.1107/S1600577519003485

    Article  CAS  Google Scholar 

  7. Xu JA, Mao HK, Bell PM (1986) High-pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal. Science 232:1404–1406. https://doi.org/10.1126/SCIENCE.232.4756.1404

    Article  CAS  Google Scholar 

  8. Jiang JZ, Staun Olsen J, Gerward L, MØrup S (1998) Enhanced bulk modulus and reduced transition pressure in γ-Fe2O3 nanocrystals. Europhys Lett 44:620–626. https://doi.org/10.1209/epl/i1998-00563-6

    Article  CAS  Google Scholar 

  9. Zhao J, Guo L, Liu J, Yang Y, Che RZ, Zhou L (2000) High bulk modulus of nanocrystal γ-Fe2O3 with chemical dodecyl benzene sulfonic decoration under high pressure. Chin Phys Lett 17:126–128. https://doi.org/10.1088/0256-307X/17/2/018

    Article  CAS  Google Scholar 

  10. Zhu H, Ma Y, Yang H, Ji C, Hou D, Guo L (2010) Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3). J Phys Chem Solids 71:1183–1186. https://doi.org/10.1016/J.JPCS.2010.03.031

    Article  CAS  Google Scholar 

  11. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565. https://doi.org/10.1016/0008-6223(95)00117-V

    Article  CAS  Google Scholar 

  12. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  13. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  14. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2007) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41. https://doi.org/10.1021/NL071822Y

    Article  Google Scholar 

  15. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80:440–447. https://doi.org/10.1063/1.362745

    Article  CAS  Google Scholar 

  16. Shroder RE, Nemanich RJ, Glass JT (1990) Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys Rev B 41:3738–3745. https://doi.org/10.1103/PhysRevB.41.3738

    Article  CAS  Google Scholar 

  17. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  18. Pawlyta M, Rouzaud JN, Duber S (2015) Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information. Carbon 84:479–490. https://doi.org/10.1016/j.carbon.2014.12.030

    Article  CAS  Google Scholar 

  19. Bokobza L, Bruneel JL, Couzi M (2015) Raman spectra of carbon-based materials (from Graphite to Carbon Black) and of some silicone composites. C 1:77–94. https://doi.org/10.3390/c1010077

  20. Zerda TW, Xu W, Zerda A, Zhao Y, Von DRB (2000) High pressure Raman and neutron scattering study on structure of carbon black particles. Carbon 38:355–361. https://doi.org/10.1016/S0008-6223(99)00111-6

    Article  CAS  Google Scholar 

  21. Li M, Guo J, Xu B (2013) Superelastic carbon spheres under high pressure. Appl Phys Lett 102:121904. https://doi.org/10.1063/1.4798556

    Article  CAS  Google Scholar 

  22. Guo JJ, Liu GH, Wang XM, Fujita T, Xu BS, Chen MW (2009) High-pressure Raman spectroscopy of carbon onions and nanocapsules. Appl Phys Lett 95:051920. https://doi.org/10.1063/1.3200246

    Article  CAS  Google Scholar 

  23. Zhang W, Yao M, Fan X, Zhao S, Chen S, Gong C, Yuan Y, Liu R, Liu B (2015) Pressure-induced transformations of onion-like carbon nanospheres up to 48 GPa. J Chem Phys 142:034702. https://doi.org/10.1063/1.4905841

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank M. H. Modi and P. K. Yadav, Soft X-ray Applications Laboratory, RRCAT, Indore, India for their help in plasma oxidation of core–shell samples. Authors are grateful to T. R. Ravindran, Materials Science Group, IGCAR, Kalpakkam, India for his help regarding Raman spectroscopy experimentation and important discussions. RRCAT, Indore is acknowledged for providing the Indus synchrotron facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Bhalerao.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.S., Shukla, B., Chakraborty, S. et al. Study on high-pressure behaviour of spherical carbon black nanoparticles with core–shell structure. Carbon Lett. 32, 1337–1344 (2022). https://doi.org/10.1007/s42823-022-00355-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00355-5

Keywords

Navigation