Skip to main content
Log in

Graphene oxide synthesis using a top–down approach and discrete characterization techniques: a holistic review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The remarkable electrical, thermal, mechanical, and optical properties of graphene and its derivative grapheme oxide have recently gained great importance, along with the large surface area and single-atoms thickness. In this respect, several techniques of synthesis such as chemical exfoliation, mechanical exfoliation, or chemical synthesis have been discovered. However, the development of graphene with fewer defects and on a large scale poses major challenges; therefore, it is increasingly necessary to produce it in large proportions with high quality. This paper reviews the top-down synthesis approach of graphene and its well-known derivative graphene oxide. Furthermore, characterization of graphene oxide nanomaterial is a critical component of the analysis. The characterization techniques employed to determine the quality, defects intensity, number of layers, and structures for graphene oxide nanomaterial at the atomic scale. This article focuses on the different involved characterization methodology for graphene oxide with their percentage utilization for the past 11 years. Additionally, reviewing all of the characterization literature for the last 11 years would be a difficult task. Therefore, the aim is to outline the existing state of graphene oxide by different characterization techniques and provide a comparative analysis based on their percentage utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted with permission from [20]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted with permission from [39, 40]

Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted with permission from [47, 48]

Fig. 10
Fig. 11
Fig. 12

Adapted with permission from [59]

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Adapted with permission from [81]

Fig. 18

Adapted with permission from [82]

Fig. 19

Adapted with permission from [83]

Fig. 20

Adapted with permission from [105]

Fig. 21

Adapted with permission from [106]

Fig. 22
Fig. 23

Adapted with permission from [117, 119]

Fig. 24

Adapted with permission from [117, 119]

Fig. 25

Adapted with permission from [126]

Fig. 26

Adapted with permission from [127]

Fig. 27

Adapted with permission from [106, 128] (Blue—holes; yellow—graphitic areas and red—disordered region)

Fig. 28

Adapted with permission from [133]

Fig. 29

Adapted with permission from [109]

Fig. 30

Adapted with permission from [134]

Fig. 31

Adapted with permission from [137]

Fig. 32

Adapted with permission from [138]

Fig. 33

Adapted with permission from [119]

Fig. 34

Adapted with permission from [141]

Fig. 35

Adapted with permission from [144]

Fig. 36

Adapted with permission from [119]

Fig. 37

Adapted with permission from [148]

Fig. 38

Adapted with permission from [153]

Fig. 39

Adapted with permission from [154]

Fig. 40

Adapted with permission from [161]

Fig. 41

Adapted with permission from [164]

Fig. 42
Fig. 43
Fig. 44

Adapted with permission from [174]

Fig. 45

Adapted with permission from [174]

Fig. 46

Adapted with permission from [113]

Fig. 47

Adapted with permission from [113]

Fig. 48

Adapted with permission from [133]

Fig. 49

Adapted with permission from [180]

Fig. 50
Fig. 51

Adapted with permission from [154]

Fig. 52

Adapted with permission from [134]

Fig. 53
Fig. 54

Adapted with permission from [102]

Fig. 55

Adapted with permission from [193]

Fig. 56

Adapted with permission from [154]

Fig. 57

Adapted with permission from [197]

Fig. 58
Fig. 59

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Anwar A, Sabih A, Aqeel AS (2016) Performance of waste coconut shell as partial replacement of natural coarse aggregate in concrete. Int J Sci Eng Res 7(8):1802–1809

    Google Scholar 

  2. Lzgvbdines MG (2008) Nanomaterials for practical functional uses. J Alloys Compd 449:242–245

    Article  Google Scholar 

  3. Konsta-gdoutos MS, Aza CA (2014) Self sensing carbon nanotube ( CNT ) and nanofiber ( CNF ) cementitious composites for real time damage assessment in smart structures. Cem Concr Compos 53:162–169

    Article  CAS  Google Scholar 

  4. Nguyen HA, Chang TP, Thymotie A (2020) Enhancement of early engineering characteristics of modified slag cement paste with alkali silicate and sulfate. Constr Build Mater 230:117013

    Article  CAS  Google Scholar 

  5. Chang TP, Shih JY, Yang KM, Hsiao TC (2007) Material properties of portland cement paste with nano-montmorillonite. J Mater Sci 42(17):7478–7487

    Article  CAS  Google Scholar 

  6. Ramsden J (2011) Nanotechnology: an introduction. Elsevier, William Andrew

    Book  Google Scholar 

  7. Adnan N, Nordin SM, Anwar A (2020) Transition pathways for Malaysian paddy farmers to sustainable agricultural practices: an integrated exhibiting tactics to adopt Green fertilizer. Land Use Policy 90:104255

    Article  Google Scholar 

  8. Nguyen HA, Chang TP, Shih JY, Chen CT (2019) Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cem Concr Compos 99:40–48

    Article  CAS  Google Scholar 

  9. Chen CT, Nguyen HA, Chang TP, Yang TR, Nguyen TD (2015) Performance and microstructural examination on composition of hardened paste with no-cement SFC binder. Constr Build Mater 76:264–272

    Article  Google Scholar 

  10. Shih JY, Chang TP, Hsiao TC (2006) Effect of nanosilica on characterization of Portland cement composite. Mater Sci Eng A 424(1–2):266–274

    Article  Google Scholar 

  11. Ahmad S, Anwar A, Mohammed BS, Bin M, Wahab A, Ahmad SA (2019) Strength behavior of concrete by partial replacement of fine aggregate with ceramic powder. Int J Recent Technol Eng 8(2):5712–5718

    Google Scholar 

  12. Columbia University (2013) Even with defects, graphene is strongest material in the world. Science Daily. https://www.sciencedaily.com/releases/2013/05/130531114733.htm

  13. NanoMalaysia (2014) Nanomalaysia: national graphene action plan 2020. Nano Malaysia. http://www.nanomalaysia.com.my/NanoMalaysia-Programmes/National-Graphene-Action-Plan/

  14. Commission E (2018) Graphene Flagship 2019 funded by European Union. Graphene Flagship 2019 funded by European Union. http://graphene-flagship.eu/project/fundingsystem/Pages/Fundingsystems.aspx

  15. Foley T, Diamante L, Waters R, Gomollón-Be F (2020) Graphene flagship—annual report 2020. The Graphene Flagship, p 41

  16. Chuah S, Pan Z, Sanjayan JG, Wang CM, Duan WH (2014) Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater 73:113–124

    Article  Google Scholar 

  17. Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gr J (2009) Surface modification of graphene nanosheets with gold nanoparticles : the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21(20):4796–4802

    Article  CAS  Google Scholar 

  18. Tiwari A, Syvaarvi M (2015) Graphene materials: fundamentals and emerging applications, first. Scrivener Publishing, LLC

  19. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  20. Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc Chem Res 45(4):598–607

    Article  CAS  Google Scholar 

  21. Novoselov KS, Geim AK, Morozov SV, Zhang Y (2004) Electric field effect in atomically thin carbon films. Science (80-) 306:666–670

    Article  CAS  Google Scholar 

  22. Wei Y, Yang R (2019) Nanomechanics of graphene. Natl Sci Rev 6(2):324–348

    Article  CAS  Google Scholar 

  23. Shenderova OA, Zhirnov VV, Brenner DW, Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27(3–4):227–356

    Article  CAS  Google Scholar 

  24. Lehtinen O, Kurasch S, Krasheninnikov AV, Kaiser U (2013) Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat Commun 4:1–7

    Article  Google Scholar 

  25. Kohlschütter V, Haenni P (1918) To the knowledge of graphitic carbon and graphitic acid. J Inorg Gen Chem 105(1):121–144

    Google Scholar 

  26. Bernal JD (1924) The structure of graphite. Proc R Soc Ser A Math Phys Character 106(740):749–773

    CAS  Google Scholar 

  27. Goyenola C, Schmidt S, Hultman L, Gueorguiev GK (2014) Carbon fluoride, CFx: structural diversity as predicted by first principles. J Phys Chem C 118(12):6514–6521

    Article  CAS  Google Scholar 

  28. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  29. Obeng Y, Srinivasan P (2011) Graphene: Is it the future for semiconductors? An overview of the material, devices, and applications. Electrochem Soc Interface 20(1):47–52

    Article  CAS  Google Scholar 

  30. Gao R, Yao Y, Wang L, Wu H (2020) Fabrication and characterization of graphene oxide modified polycarboxylic by in situ polymerization. J Appl Polym Sci 137(4):1–8

    Article  Google Scholar 

  31. Madurani KA, Suprapto S, Machrita NI, Bahar SL, Illiya W, Kurniawan F (2020) Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J Solid State Sci Technol 9(9):3013

    Article  Google Scholar 

  32. Shamsaei E, de Souza FB, Yao X, Benhelal E, Akbari A, Duan W (2018) Graphene-based nanosheets for stronger and more durable concrete: a review. Constr Build Mater 183:642–660

    Article  CAS  Google Scholar 

  33. Lu L, Zhao P, Lu Z (2018) A short discussion on how to effectively use graphene oxide to reinforce cementitious composites. Constr Build Mater 189:33–41

    Article  CAS  Google Scholar 

  34. Li W, Li X, Chen SJ, Liu YM, Duan WH, Shah SP (2017) Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Constr Build Mater 136:506–514

    Article  CAS  Google Scholar 

  35. Li G, Yuan JB, Zhang YH, Zhang N, Liew KM (2018) Microstructure and mechanical performance of graphene reinforced cementitious composites. Compos Part A Appl Sci Manuf 114:188–195

    Article  CAS  Google Scholar 

  36. Anwar A, Mohammed BS, Wahab MA, Liew MS (2020) Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial—a review. Dev Built Environ 1(100002):1–21

    Google Scholar 

  37. Rafiee MA et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183

    Article  CAS  Google Scholar 

  38. Gonclaves G, Marques PAAP, Cruz SMA, Ramalho A (2012) Nanoscale graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 4:2937–2945

    Article  Google Scholar 

  39. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene versatile building blocks for carbon-based materials. Small 6(6):711–723

    Article  CAS  Google Scholar 

  40. Hong An Wong C, Pumera M (2012) Stripping voltammetry at chemically modified graphenes. RSC Adv 2(14):6068–6072

    Article  Google Scholar 

  41. Olumurewa KO, Olofinjana B, Fasakin O, Eleruja MA, Ajayi EOB (2017) Characterization of high yield graphene oxide synthesized by simplified hummers method. Graphene 06(04):85–98

    Article  CAS  Google Scholar 

  42. Anwar A (2016) The influence of waste glass powder as a pozzolanic material in concrete. Int J Civ Eng Technol 7(6):131–148

    Google Scholar 

  43. Hack R, Correia CHG, Zanon RADS, Pezzin SH (2018) Characterization of graphene nanosheets obtained by a modified hummer’s method. Rev Mater 23(1):1–11

    Google Scholar 

  44. Zhang Z, Schniepp HC, Adamson DH, Schniepp HC, Adamson DH (2019) Characterization of graphene oxide: variations in reported approaches. Carbon NY 1–39

  45. Tan C et al (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    Article  CAS  Google Scholar 

  46. Kaur M, Kaur H, Kukkar D (2018) Synthesis and characterization of graphene oxide using modified Hummer’s method. AIP Conf Proc 1953:1–5

    Google Scholar 

  47. Mistralab (2009) Structure of grapheme. Mistralab. http://www.mistralab.it/approfondimenti/Telecomunicazioni_progetto2/grafene/Structureofgraphene.html.

  48. Tuček J, Błoński P, Ugolotti J, Swain AK, Enoki T, Zbořil R (2018) Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem Soc Rev 47(11):3899–3990

    Article  Google Scholar 

  49. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-) 321(5887):385–388

    Article  CAS  Google Scholar 

  50. Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  51. Dixit A, Dixit D, Chandrodaya VV, Kajla A (2013) Graphene: a new era of technology. Int J Emerg Technol Adv Eng 3(3):4–7

    Google Scholar 

  52. Berry V (2013) Impermeability of graphene and its applications. Carbon N Y 62:1–24

    Article  CAS  Google Scholar 

  53. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nat Nanotechnol 3(4):206–209

    Article  CAS  Google Scholar 

  54. Liu N et al (2017) Ultratransparent and stretchable graphene electrodes. Sci Adv 3(9):e1700159

    Article  Google Scholar 

  55. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon N Y 39(4):507–514

    Article  CAS  Google Scholar 

  56. Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  57. Sheehy DE, Schmalian J (2009) Optical transparency of graphene as determined by the fine-structure constant . Phys Rev B Condens Matter Mater Phys 80(19):2–5

    Article  Google Scholar 

  58. Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater J 24:2060–2071

    Article  Google Scholar 

  59. Sobolev K, Gutiérrez MF (2005) How nanotechnology can change the concrete world. Am Ceram Soc 84(11):16–20

    CAS  Google Scholar 

  60. Farjadian F et al (2020) Recent developments in graphene and graphene oxide: properties, synthesis, and modifications: a review. ChemistrySelect 5(33):10200–10219

    Article  CAS  Google Scholar 

  61. E. Drexler, C. Peterson, G. Pergamit, S. Brand (1991) Unbounding the Future: The Nanotechnology Revolution. New York: William Morrow; 1st edition

  62. Rollings E et al (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67(9–10):2172–2177

    Article  CAS  Google Scholar 

  63. Anwar A, Sabih A, Mohdshrafusain S, Aqeelhmad S (2015) Salvage of ceramic waste and marble dust for the refinement of sustainable concrete. Int J Civ Eng Technol 6(69):79–92

    Google Scholar 

  64. Xin G, Hwang W, Kim N, Chae H (2010) A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes. Nanotechnology 21:1–7

    Article  CAS  Google Scholar 

  65. Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    Article  CAS  Google Scholar 

  66. Sharma N et al (2017) Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol Symp 376(1):1–5

    Article  Google Scholar 

  67. Bhuyan MM, Uddin MSA, Islam MN (2016) Synthesis of graphene. Int Nano Lett 6(2):65–83

    Article  CAS  Google Scholar 

  68. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science (80-) 306(5696):666–669

    Article  CAS  Google Scholar 

  69. Ci L et al (2009) Graphene shape control by multistage cutting and transfer. Adv Mater 21(44):4487–4491

    Article  CAS  Google Scholar 

  70. Kamali A, Fray D (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon N Y 56:121–131

    Article  CAS  Google Scholar 

  71. Lang B (1975) A LEED study of the deposition of carbon on platinum crystal surfaces. Surf Sci 53(1):317–329

    Article  CAS  Google Scholar 

  72. Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3):269–272

    Article  CAS  Google Scholar 

  73. Adetayo A, Runsewe D (2019) Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater 09(02):207–229

    Article  CAS  Google Scholar 

  74. Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989

    Article  CAS  Google Scholar 

  75. Berger M (2019) Understanding grapheme. Nanowork Infographic. https://www.nanowerk.com/what_is_graphene.php.

  76. Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):1–7

    Article  Google Scholar 

  77. Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80-) 324(5932):1312–1314

    Article  CAS  Google Scholar 

  78. Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113(11):4257–4259

    Article  CAS  Google Scholar 

  79. Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem 15(9):974–978

    Article  CAS  Google Scholar 

  80. Baig Z, Mamat O, Mustapha M, Mumtaz A, Munir KS (2018) Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs ) for superior solvent dispersion. Ultrason Sonochemistry 45(March):133–149

    Article  CAS  Google Scholar 

  81. Vallés C et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130(47):15802–15804

    Article  Google Scholar 

  82. Marcano DC et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  83. Lv S, Ting S, Liu J, Zhou Q (2014) Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst Eng Comm 16(36):8508–8516

    Article  CAS  Google Scholar 

  84. Tung TT et al (2016) Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Appl Mater Interfaces 8(25):16521–16532

    Article  CAS  Google Scholar 

  85. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232

    Article  CAS  Google Scholar 

  86. Li DAN, Gilje S, Kaner RB, Wallace GG, Mu MB (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  Google Scholar 

  87. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of grapheme. Rev Mod Phys 81(1):109–162

    Article  CAS  Google Scholar 

  88. Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770

    Article  CAS  Google Scholar 

  89. Berger C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science (80-) 312(5777):1191–1196

    Article  CAS  Google Scholar 

  90. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016

    Article  CAS  Google Scholar 

  91. Del M, López PL, Palomino JLV, Silva MLS, Izquierdo AR (2016) Optimization of the synthesis procedures of graphene and graphite oxide. Recent Adv Graphene Res 6:1–21

    Google Scholar 

  92. Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK (2016) Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials 9(6):406

    Article  Google Scholar 

  93. Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem Rev 115(7):2483–2531

    Article  CAS  Google Scholar 

  94. Skoda M, Dudek I, Jarosz A, Szukiewicz D (2014) Graphene: One material, many possibilities—application difficulties in biological systems. J Nanomater 2014

  95. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47

    Article  Google Scholar 

  96. Szabó T, Berkesi P, Forgó O, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Article  Google Scholar 

  97. Talyzin AV, Hausmaninger T, You S, Szabó T (2013) The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures. Nanoscale 6(1):272–281

    Article  Google Scholar 

  98. Liu P, Hou J, Zhang Y, Li L, Lu X, Tang Z (2020) Two-dimensional material membranes for critical separations. Inorg Chem Front 7(13):2560–2581

    Article  Google Scholar 

  99. Scholz W, Boehm HP (1969) Investigations on the structure of graphite oxide. Zeitschrift Fur Anorg Und Allg Chemie 236(369):327–340

    Article  Google Scholar 

  100. Nakajima T, Matsuo Y (1994) Formation process and structure of graphite oxide. Carbon N Y 32(3):469–475

    Article  CAS  Google Scholar 

  101. He H, Riedl T, Lerf A, Klinowski J (1996) Solid-state NMR studies of the structure of graphite oxide. J Phys Chem 100(51):19954–19958

    Article  CAS  Google Scholar 

  102. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  103. Szabó T et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Article  Google Scholar 

  104. Trikkaliotis DG, Mitropoulos AC, Kyzas GZ (2020) Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids Surf A Physicochem Eng Asp 600:12

    Article  Google Scholar 

  105. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. R Soc Chem 39:228–240

    Article  CAS  Google Scholar 

  106. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  Google Scholar 

  107. Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF (2009) Ultraflat graphene. Nat Lett 462(7271):339–341

    Article  CAS  Google Scholar 

  108. Elias DC et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science (80-) 323(5914):610–614

    Article  CAS  Google Scholar 

  109. Gómez-Navarro C et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503

    Article  Google Scholar 

  110. Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phys Chem C 113(35):15768–15771

    Article  CAS  Google Scholar 

  111. Schniepp HC et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    Article  CAS  Google Scholar 

  112. Yang H, Cui H, Tang W, Li Z, Han N, Xing F (2017) A critical review on research progress of graphene/cement based composites. Compos Part A Appl Sci Manuf 102:273–296

    Article  CAS  Google Scholar 

  113. Gong MS, Cha JR, Hong SM, Lee C, Lee DH, Joo SW (2020) Roll-to-roll graphene oxide radon barrier membranes. J Hazard Mater 383:121148

    Article  CAS  Google Scholar 

  114. Muzyka R, Drewniak S, Pustelny T, Chrubasik M, Gryglewicz G (2018) Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials (Basel) 11(7):15–17

    Article  Google Scholar 

  115. Kang J, Chae J, Shul C, Jung W (2019) A study on the effects of the number of layers of graphene for flow-induced power generation on graphene/polyetrafluoroethylene membranes. Mater Lett 255:6–8

    Article  Google Scholar 

  116. Shahhriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 02(01):58–63

    Google Scholar 

  117. Kariminejad B, Salami-Kalajahi M, Roghani-Mamaqani H (2015) Thermophysical behaviour of matrix-grafted graphene/poly(ethylene tetrasulphide) nanocomposites. RSC Adv 5(121):100369–100377

    Article  CAS  Google Scholar 

  118. Shalaby A, Nihtianova D, Markov P, Staneva AD (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg Chem Commun 47(1):291–295

    Google Scholar 

  119. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polystyrene-grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Adv 4(47):24439–24452

    Article  CAS  Google Scholar 

  120. Al-Gaashani R, Zakaria Y, Lee OS, Ponraj J, Kochkodan V, Atieh MA (2021) Effects of preparation temperature on production of graphene oxide by novel chemical processing. Ceram Int 47(7):10113–10122

    Article  CAS  Google Scholar 

  121. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  122. Guo S, Qiao X, Zhao T, Wang Y-S (2020) Preparation of highly dispersed graphene and its effect on the mechanical properties and microstructures of geopolymer. J Mater Civ Eng 32(11):04020327

    Article  CAS  Google Scholar 

  123. Hadad C et al (2021) Graphene quantum dots: from efficient preparation to safe renal excretion. Nano Res 14(3):674–683

    Article  CAS  Google Scholar 

  124. Wang Z et al (2021) Reduced graphene oxide thin layer induced lattice distortion in high crystalline mno2 nanowires for high-performance sodium- and potassium-ion batteries and capacitors. Carbon N Y 174:556–566

    Article  CAS  Google Scholar 

  125. Zheng H, Cheng Y, Zhao R, Ye Y, Chen J (2021) An improved strategy to synthesize graphite oxide with controllable interlayer spacing as coatings for anticorrosion application. J Appl Polym Sci 138(6):1–9

    Article  Google Scholar 

  126. Zhao L et al (2016) Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr Build Mater 113:470–478

    Article  CAS  Google Scholar 

  127. Yang H, Monasterio M, Cui H, Han N (2017) Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Compos Part A Appl Sci Manuf 102:263–272

    Article  CAS  Google Scholar 

  128. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22(40):4467–4472

    Article  CAS  Google Scholar 

  129. Gómez-Navarro C et al (2010) Atomic structure of reduced graphene oxide. Nano Lett 10(4):1144–1148

    Article  Google Scholar 

  130. Ying Y, Yang Y, Ying Y, He P, Deng H, Sun P (2018) Cross- flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation. Nanotechnology 29:155602

    Article  Google Scholar 

  131. Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating and mechanical properties of graphite oxide. J Phys Chem C 111(49):18099–18111

    Article  CAS  Google Scholar 

  132. Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM (2010) Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J Struct Biol 170(1):152–156

    Article  CAS  Google Scholar 

  133. Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45(7):1558–1565

    Article  CAS  Google Scholar 

  134. Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25(10):5957–5968

    Article  CAS  Google Scholar 

  135. Jung I et al (2007) Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett 7(12):3569–3575

    Article  CAS  Google Scholar 

  136. Blake P et al (2007) Making graphene visible. Appl Phys Lett 91(6):63124

    Article  Google Scholar 

  137. Park JS, Reina A, Saito R, Kong J, Dresselhaus G, Dresselhaus MS (2009) G′ band Raman spectra of single, double and triple layer graphene. Carbon N Y 47(5):1303–1310

    Article  CAS  Google Scholar 

  138. Kim J, Cote LJ, Kim F, Huang J (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267

    Article  CAS  Google Scholar 

  139. Treossi E, Melucci M, Liscio A, Gazzano M, Samorì P, Palermo V (2009) High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J Am Chem Soc 131:15576–15577

    Article  CAS  Google Scholar 

  140. Babak F, Abolfazl H, Alimorad R, Parviz G (2014) Preparation and mechanical properties of graphene oxide: cement nanocomposites. Sci World J 2014:1–11

    Article  Google Scholar 

  141. Jeong H-K et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130(3):1362–1366

    Article  CAS  Google Scholar 

  142. Tong T, Fan Z, Liu Q, Wang S, Yu Q (2016) Investigation of the effects of graphene on the micro- and macro-properties of cementitious materials. Constr Build Mater 106:102–114

    Article  CAS  Google Scholar 

  143. Lv S, Qiu C, Ma Y, Zhou Q (2013) Regulation of GO on cement hydration crystals and its toughening effect. Mag Concr Res 65(20):1246–1254

    Article  CAS  Google Scholar 

  144. Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater 49:121–127

    Article  CAS  Google Scholar 

  145. Sobolkina A et al (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Compos 34(10):1104–1113

    Article  CAS  Google Scholar 

  146. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  147. Ferrari AC et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):1–4

    Article  Google Scholar 

  148. Horszczaruk E, Mijowska E, Kalenczuk RJ, Aleksandrzak M, Mijowska S (2015) Nanocomposite of cement/graphene oxide—impact on hydration kinetics and Young’s modulus. Constr Build Mater 78:234–242

    Article  Google Scholar 

  149. Anwar A, Mohammed BS, Mubarak Bin Abdul Wahab KM, Liew MS (2021) Structural quality of graphene oxide nanosheets on the basis of defect ratio: a raman study. In: Lecture notes in mechanical engineering, 2021st ed., Kuala Lumpur, pp. 423–439

  150. Beams R, Gustavo Cançado L, Novotny L (2015) Raman characterization of defects and dopants in graphene. J Phys Condens Matter 27(8):083002

    Article  CAS  Google Scholar 

  151. Wang N et al (2020) Improved interfacial bonding strength and reliability of functionalized graphene oxide for cement reinforcement applications. Chem A Eur J 26(29):6561–6568

    Article  CAS  Google Scholar 

  152. Zhang X, Su Y, Lei L, Wu S, Shen J (2021) Preparation of a three-dimensional modified graphene oxide via RAFT polymerization for reinforcing cement composites. Colloids Surf A Physicochem Eng Asp 610:125925

    Article  CAS  Google Scholar 

  153. You Y, Ni Z, Yu T, Shen Z (2008) Edge chirality determination of graphene by Raman spectroscopy. Appl Phys Lett 93(16):163112

    Article  Google Scholar 

  154. Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20(5):2883–2887

    Article  CAS  Google Scholar 

  155. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  156. Schönfelder R et al (2007) Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. Nanotechnology 18(37)

  157. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1(6)

  158. Wang H, Robinson JT, Li X, Dai H (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131(29):9910–9911

    Article  CAS  Google Scholar 

  159. Zhan Y, Yang J, Meng F, Guo H, Liu X, Yang X (2012) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22(12):5602

    Article  CAS  Google Scholar 

  160. Gedler G, Antunes M, Realinho V, Velasco JI (2012) Thermal stability of polycarbonate-graphene nanocomposite foams. Polym Degrad Stab 97(8):1297–1304

    Article  CAS  Google Scholar 

  161. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Thermal stability of graphite oxide. Chem Phys Lett 470(4–6):255–258

    Article  CAS  Google Scholar 

  162. Jeong HK et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130(4):1362–1366

    Article  CAS  Google Scholar 

  163. Hedayatian M, Vahedi K, Nezamabadi A, Momeni A (2020) Microstructural and mechanical behavior of Al6061-graphene oxide nanocomposites. Met Mater Int 26(6):760–772

    Article  CAS  Google Scholar 

  164. Acik M, Lee G, Chabal YJ, Mattevi C, Chhowalla M, Cho K (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater 9(10):840–845

    Article  CAS  Google Scholar 

  165. A Romani (2015) Graphene oxide as a cement reinforcing additive. Politecnico di Milano

  166. Sun Y, Wang X, Song W, Lu S, Chen C, Wang X (2017) Mechanistic insights into the decontamination of Th(iv) on graphene oxide-based composites by EXAFS and modeling techniques. Environ Sci Nano 4(1):222–232

    Article  CAS  Google Scholar 

  167. Kuzenkova AS et al (2019) New insights into the mechanism of graphene oxide and radionuclide interaction. Carbon N Y 158:291–302

    Article  Google Scholar 

  168. Yadav AK et al (2021) Local structural investigations of graphitic ZnO and reduced graphene oxide composite. Appl Surf Sci 565:150548

    Article  CAS  Google Scholar 

  169. D’Angelo D et al (2015) Electron energy-loss spectra of graphene oxide for the determination of oxygen functionalities. Carbon N Y 93:1034–1041

    Article  Google Scholar 

  170. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon N Y 50(9):3210–3228

    Article  CAS  Google Scholar 

  171. Ramakrishnan MC, Thangavelu RR (2015) Synthesis and characterization of reduced graphene oxide. University of Waterloo, Ontario

  172. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chem Eng J 251:422–434

    Article  CAS  Google Scholar 

  173. Zhou M et al (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem A Eur J 15(25):6116–6120

    Article  CAS  Google Scholar 

  174. Zeng F et al (2011) In situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors. Chemsuschem 4(11):1587–1591

    Article  CAS  Google Scholar 

  175. Yang D et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon N Y 47(1):145–152

    Article  CAS  Google Scholar 

  176. Biniak S, Szymański G, Siedlewski J, Światkoski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon N Y 35(12):1799–1810

    Article  CAS  Google Scholar 

  177. Xu Y, Sheng K, Li C, Shi G (2011) Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem 21(20):7376–7380

    Article  CAS  Google Scholar 

  178. Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748

    Article  CAS  Google Scholar 

  179. Paredes JI, Martı A, Tasco JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  180. Lu Z, Yao J, Leung CKY (2019) Using graphene oxide to strengthen the bond between PE fiber and matrix to improve the strain hardening behavior of SHCC. Cem Concr Res 126:105899

    Article  CAS  Google Scholar 

  181. Xu L, Cheng L (2013) Graphite oxide under high pressure: a Raman spectroscopic study. J Nanomater 2013:1–6

    Article  CAS  Google Scholar 

  182. Park S et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9(4):1593–1597

    Article  CAS  Google Scholar 

  183. De Souza FAL, Ambrozio AR, Souza ES, Cipriano DF, Scopel WL, Freitas JCC (2016) NMR spectral parameters in graphene, graphite, and related materials: Ab initio calculations and experimental results. J Phys Chem C 120(48):27707–27716

    Article  Google Scholar 

  184. Vacchi IA, Spinato C, Raya J, Bianco A, Ménard-Moyon C (2016) Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale 8(28):13714–13721

    Article  CAS  Google Scholar 

  185. Chatham JC, Blackband SJ (2001) Nuclear magnetic resonance spectroscopy and imaging in animal research. ILAR J 42(3):189–208

    Article  CAS  Google Scholar 

  186. Guo C (2017) Nuclear magnetic resonance (NMR) spectroscopic characterization of nanomaterials and biopolymers. Arizona State University

  187. Bryce DL (2017) NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ 4(4):350–359

    Article  CAS  Google Scholar 

  188. Raja PMV, Barron AR (1934) Physical methods in chemistry

  189. PMV Raja, AR Barron (1934) Characterization of graphene by NMR mechanism. In Physical methods in chemistry 6–10

  190. Mazur AS, Vovk MA, Tolstoy PM (2020) Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fuller Nanotube Carbon Nanostruct 28(3):202–213

    Article  CAS  Google Scholar 

  191. Casabianca LB et al (2010) NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J Am Chem Soc 132(16):5672–5676

    Article  CAS  Google Scholar 

  192. Mermoux M, Chabre Y, Rousseau A (1991) FTIR and 13C NMR study of graphite oxide. Carbon N Y 29(3):469–474

    Article  CAS  Google Scholar 

  193. Cai W et al (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science (80-) 321:1815–1818

    Article  CAS  Google Scholar 

  194. Ishii Y (2001) 13C-13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114(19):8473–8483

    Article  CAS  Google Scholar 

  195. Emwas AHM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research 1277

  196. Klinowski J, Lerf A, He H, Forster M (1998) A new structural model for graphite oxide. Chem Phys Lett 287(1–2):53–56

    Google Scholar 

  197. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    Article  CAS  Google Scholar 

  198. Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon N Y 43(3):641–649

    Article  CAS  Google Scholar 

  199. Hontoria-Lucas C, López-Peinado AJ, de López-González J, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon N Y 33(11):1585–1592

    Article  CAS  Google Scholar 

  200. Luo J et al (2010) Graphene oxide nanocolloids. J Am Chem Soc 132(50):17667–17669

    Article  CAS  Google Scholar 

  201. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132(23):8180–8186

    Article  CAS  Google Scholar 

  202. Tian L et al (2010) Graphene oxides for homogeneous dispersion of carbon nanotubes. ACS Appl Mater Interfaces 2(11):3217–3222

    Article  CAS  Google Scholar 

  203. Qiu L et al (2010) Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem A Eur J 16(35):10653–10658

    Article  CAS  Google Scholar 

  204. Fan Z et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723–3728

    Article  CAS  Google Scholar 

  205. Lu X et al (2011) A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta 56(14):5115–5121

    Article  CAS  Google Scholar 

  206. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  Google Scholar 

  207. Zhang B, Binheng Q, Huang ZD, Oh SW, Kim JK (2011) SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon N Y 49(13):4524–4534

    Article  CAS  Google Scholar 

  208. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115(34):17009–17019

    Article  CAS  Google Scholar 

  209. Yang S-Y et al (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 21(7):2374–2380

    Article  CAS  Google Scholar 

  210. Liu Y-Z, Chen C-M, Li Y-F, Li X-M, Kong Q-Q, Wang M-Z (2014) Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage. J Mater Chem A 2(16):5730–5737

    Article  CAS  Google Scholar 

  211. Shao J-J et al (2012) Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chem Commun 48(31):3706–3708

    Article  CAS  Google Scholar 

  212. Chen S, Yeoh W, Liu Q, Wang G (2012) Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon N Y 50:4557–4565

    Article  CAS  Google Scholar 

  213. Huang Z-D et al (2012) Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 22(8):3591–3599

    Article  CAS  Google Scholar 

  214. Guo P, Chen P, Liu M (2013) One-dimensional porphyrin nanoassemblies assisted via graphene oxide: sheetlike functional surfactant and enhanced photocatalytic behaviors. ACS Appl Mater Interfaces 5(11):5336–5345

    Article  CAS  Google Scholar 

  215. He Y et al (2013) Factors that affect pickering emulsions stabilized by graphene Oxide. ACS Appl Mater Interfaces 5(11):4843–4855

    Article  CAS  Google Scholar 

  216. Yin G, Zheng Z, Wang H, Du Q, Zhang H (2013) Preparation of graphene oxide coated polystyrene microspheres by Pickering emulsion polymerization. J Colloid Interface Sci 394:192–198

    Article  CAS  Google Scholar 

  217. Kim SD, Zhang WL, Choi HJ (2014) Pickering emulsion-fabricated polystyrene–graphene oxide microspheres and their electrorheology. J Mater Chem C 2(36):7541–7546

    Article  CAS  Google Scholar 

  218. Che Man SH, Mohd Yusof NY, Whittaker MR, Thickett SC, Zetterlund PB (2013) Influence of monomer type on miniemulsion polymerization systems stabilized by graphene oxide as sole surfactant. J Polym Sci Part A Polym Chem 51(23):5153–5162

    Article  CAS  Google Scholar 

  219. Che Man SH, Thickett SC, Whittaker MR, Zetterlund PB (2013) Synthesis of polystyrene nanoparticles ‘armoured’ with nanodimensional graphene oxide sheets by miniemulsion polymerization. J Polym Sci Part A Polym Chem 51(1):47–58

    Article  CAS  Google Scholar 

  220. Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2014) Graphene oxide as a surfactant and support for in-situ synthesis of Au–Pd nanoalloys with improved visible light photocatalytic activity. J Phys Chem C 118(10):5299–5308

    Article  CAS  Google Scholar 

  221. Tang C et al (2014) Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6(14):7877–7888

    Article  CAS  Google Scholar 

  222. Kim M, Kim DY, Kang Y, Park OO (2015) Facile fabrication of highly flexible graphene paper for high-performance flexible lithium ion battery anode. RSC Adv 5(5):3299–3305

    Article  CAS  Google Scholar 

  223. Pan X, Yang M-Q, Xu Y-J (2014) Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys Chem Chem Phys 16(12):5589–5599

    Article  CAS  Google Scholar 

  224. Li J, Zeng X, Ren T, van der Heide E (2014) The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2:137–161

    Article  Google Scholar 

  225. Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D (2004) Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J Phys Chem B 108(13):3955–3958

    Article  CAS  Google Scholar 

  226. Kazi SN et al (2015) Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets. Nanoscale Res Lett 10(1):212

    Article  Google Scholar 

  227. Peng J, Weng J (2015) One-pot solution-phase preparation of a MoS2/graphene oxide hybrid. Carbon N Y 94:568–576

    Article  CAS  Google Scholar 

  228. Wahid MH, Chen X, Gibson CT, Raston CL (2015) Amphiphilic graphene oxide stabilisation of hexagonal BN and MoS2 sheets. Chem Commun 51(58):11709–11712

    Article  CAS  Google Scholar 

  229. Thickett SC, Zetterlund PB (2015) Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: influence of oil phase polarity. J Colloid Interface Sci 442:67–74

    Article  CAS  Google Scholar 

  230. Liu J, Li X, Jia W, Li Z, Zhao Y, Ren S (2015) Demulsification of crude oil-in-water emulsions driven by graphene oxide nanosheets. Energy Fuels 29(7):4644–4653

    Article  CAS  Google Scholar 

  231. Murugan M, Santhanam M, Sen Gupta S, Pradeep T, Shah SP (2016) Portland cement paste in comparison to popularly reviewed nanomaterials like aluminium oxide. Cem Concr Compos 70:48–59

    Article  CAS  Google Scholar 

  232. Kothiyal NC, Sharma S, Mahajan S, Sethi S (2016) Characterization of reactive graphene oxide synthesized from ball - Milled graphite: Its enhanced reinforcing effects on cement nanocomposites. J Adhes Sci Technol 30(9):915–933

    Article  CAS  Google Scholar 

  233. Liu Y et al (2016) Polystyrene/graphene oxide nanocomposites synthesized via pickering polymerization. Prog Org Coatings 99:23–31

    Article  CAS  Google Scholar 

  234. Fang S, Chen T, Wang R, Xiong Y, Chen B, Duan M (2016) Assembly of graphene oxide at the crude oil/water interface: a new approach to efficient demulsification. Energy Fuels 30(4):3355–3364

    Article  CAS  Google Scholar 

  235. Ickecan D, Zan R, Nezir S (2017) Eco-friendly synthesis and characterization of reduced graphene oxide. J Phys Conf Ser 902(1):8–12

    Google Scholar 

  236. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  237. Mokhtar MM, Abo-El-Enein SA, Hassaan MY, Morsy MS, Khalil MH (2017) Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement. Constr Build Mater 138:333–339

    Article  CAS  Google Scholar 

  238. Zhou C, Li F, Hu J, Ren M, Wei J, Yu Q (2017) Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr Build Mater 134:336–345

    Article  CAS  Google Scholar 

  239. Ghazizadeh S, Duffour P, Skipper NT, Bai Y (2018) Understanding the behaviour of graphene oxide in Portland cement paste. Cem Concr Res 111(May):169–182

    Article  CAS  Google Scholar 

  240. Mohammed A, Sanjayan JG, Nazari A, Al-saadi NTK (2018) The role of graphene oxide in limited long-term carbonation of cement-based matrix. Constr Build Mater 168:858–866

    Article  CAS  Google Scholar 

  241. Long WJ, Fang C, Wei J, Li H (2018) Stability of GO modified by different dispersants in cement paste and its related mechanism. Materials (Basel) 11(5):1–17

    Article  CAS  Google Scholar 

  242. Jiang W, Li X, Lv Y, Zhou M, Liu Z, Ren Z (2018) Cement-based materials containing graphene oxide and polyvinyl alcohol fiber : mechanical properties, durability, and microstructure. Nanomaterials 8:1–16

    Article  Google Scholar 

  243. Lu Z, Ahanif A, Sun G, Liang R, Pavithraarthasarathy ZL (2018) Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement- based materials with enhanced mechanical properties. Cem Concr Compos 87:220–228

    Article  CAS  Google Scholar 

  244. Korucu H, Şimşek B, Uygunoğlu T, Güvenç AB, Yartaşı A (2019) Statistical approach to carbon based materials reinforced cementitious composites: mechanical, thermal, electrical and sulfuric acid resistance properties. Compos Part B Eng 171(August):347–360

    Article  CAS  Google Scholar 

  245. Kang X, Zhu X, Qian J, Liu J, Huang Y (2019) Effect of graphene oxide ( GO ) on hydration of tricalcium silicate ( C 3 S ). Constr Build Mater 203:514–524

    Article  CAS  Google Scholar 

  246. Liu J, Li Q, Ph D, Xu S, Ph D, Asce M (2019) Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J Mater Civ Eng 31(4):1–9

    Article  Google Scholar 

  247. Li G, Zhang LW (2019) Microstructure and phase transformation of graphene-cement composites under high temperature. Compos Part B Eng 166:86–94

    Article  CAS  Google Scholar 

  248. Peng H, Ge Y, Cai CS, Zhang Y, Liu Z (2019) Mechanical properties and microstructure of graphene oxide cement-based composites. Constr Build Mater 194:102–109

    Article  CAS  Google Scholar 

  249. Wang Q, Li S, Pan S, Cui X, Corr DJ, Shah SP (2019) Effect of graphene oxide on the hydration and microstructure of fly ash-cement system. Constr Build Mater 198:106–119

    Article  CAS  Google Scholar 

  250. Xu G, Du S, He J, Shi X (2019) The role of admixed graphene oxide in a cement hydration system. Carbon N Y 148:141–150

    Article  CAS  Google Scholar 

  251. Birenboim M et al (2019) Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Compos Part B 161:68–76

    Article  CAS  Google Scholar 

  252. Bhoria R (2019) Enhancing liquid phase exfoliation of graphene in organic solvents with additives. In Graphene and its derivatives—synthesis and applications, InTech Open, pp 1–15

  253. Qureshi TS, Panesar DK (2019) Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Constr Build Mater 206:71–83

    Article  CAS  Google Scholar 

  254. Kang S et al (2019) Graphene oxide quantum dots derived from coal for bioimaging : facile and green approach. Sci Rep 9(4101):1–7

    Google Scholar 

  255. Devi SC, Khan RA (2019) Effect of graphene oxide on mechanical and durability performance of concrete. J Mater Eng Struct 276:201–214

    Google Scholar 

  256. Van der Schueren B et al (2020) Polyvinyl alcohol-few layer graphene composite films prepared from aqueous colloids. Investigations of mechanical, conductive and gas barrier properties. Nanomaterials 10(5):1–14

    Google Scholar 

  257. R. Jothiramalingam, H. A. Al-lohedan, P. Arunachalam, and Z. Issa, “Synthesis and characterization of metal chalcogenide modified graphene sandwiched manganese oxide nanofibers on nickel foam electrodes for high performance supercapacitor applications,” J. Alloys Compd., pp. 1–42, 2020.

  258. R. Askarnia, B. Ghasemi, S. R. Fardi, H. R. Lashgari, and E. Adabifiroozjaei, “Fabrication of high strength aluminum-graphene oxide (GO) composites using microwave sintering,” Adv. Compos. Mater., pp. 1–15, 2020.

  259. Paton-Carrero A, Valverde JL, Garcia-Alvarez E, Lavin-Lopez MP, Romero A (2020) Influence of the oxidizing agent in the synthesis of graphite oxide. J Mater Sci 55(6):2333–2342

    Article  CAS  Google Scholar 

  260. Jakhar R, Yap JE, Joshi R (2020) Microwave reduction of graphene oxide. Carbon N Y 170:277–293

    Article  CAS  Google Scholar 

  261. J. Luo, L. Yang, D. Sun, Z. Gao, K. Jiao, and J. Zhang, “Graphene Oxide ‘Surfactant’-Directed Tunable Concentration of Graphene Dispersion,” Small, vol. 16, no. 45, 2020.

  262. C. H. A. Tsang, H. Huang, J. Xuan, H. Wang, and D. Y. C. Leung, “Graphene materials in green energy applications: Recent development and future perspective,” Renew. Sustain. Energy Rev., vol. 120, 2020.

  263. Y. Shen et al., “Fabrication of Composite Material with Pd Nanoparticles and Graphene on Nickel Foam for Its Excellent Electrocatalytic Performance,” Electrocatalysis, pp. 1–14, 2020.

  264. Hoseini-Ghahfarokhi M et al (2020) Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int J Nanomed 15:9469–9496

    Article  CAS  Google Scholar 

  265. Sharma HB, Panigrahi S, Sarmah AK, Dubey BK (2020) High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode. Carbon N Y 135907

  266. Vallurupalli K, Meng W, Liu J, Khayat KH (2020) Effect of graphene oxide on rheology, hydration and strength development of cement paste. Constr Build Mater 265:120311

    Article  CAS  Google Scholar 

  267. Du Y, Yang J, Skariahhomas B, Li L, Li H, Nazar S (2020) Hybrid graphene oxide/carbon nanotubes reinforced cement paste: an investigation on hybrid ratio. Constr Build Mater 261:119815

    Article  CAS  Google Scholar 

  268. Imanian Ghazanlou S, Jalaly M, Sadeghzadeh S, Habibnejadorayem A (2020) High-performance cement containing nanosized Fe3O4—decorated graphene oxide. Constr Build Mater 260:120454

    Article  CAS  Google Scholar 

  269. Chintalapudi K, Pannem RMR (2020) The effects of graphene oxide addition on hydration process, crystal shapes, and microstructural transformation of ordinary portland cement. J Build Eng 32:101551

    Article  Google Scholar 

  270. Devi SC, Khan RA (2020) Effect of sulfate attack and carbonation in graphene oxide-reinforced concrete containing recycled concrete aggregate. J Mater Civ Eng 32(11):04020339

    Article  CAS  Google Scholar 

  271. Zhao L et al (2020) Experimental and molecular dynamics studies on the durability of sustainable cement-based composites: Reinforced by graphene. Constr Build Mater 257:119566

    Article  CAS  Google Scholar 

  272. Gong J, Lin L, Fan S (2020) Modification of cementitious composites with graphene oxide and carbon nanotubes. SN Appl Sci 2(9):1–6

    Article  Google Scholar 

  273. Lu Z, Yu J, Yao J, Hou D (2020) Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide. Cem Concr Compos 112:103676

    Article  CAS  Google Scholar 

  274. Jing G et al (2020) From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites. Constr Build Mater 248:118699

    Article  CAS  Google Scholar 

  275. Liu X et al (2020) Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Constr Build Mater 247:118544

    Article  CAS  Google Scholar 

  276. Jing G et al (2020) Introducing reduced graphene oxide to enhance the thermal properties of cement composites. Cem Concr Compos 109:103559

    Article  CAS  Google Scholar 

  277. Lin J, Shamsaei E, Basquiroto de Souza F, Sagoe-Crentsil K, Duan WH (2019) Dispersion of graphene oxide–silica nanohybrids in alkaline environment for improving ordinary Portland cement composites. Cem Concr Compos 106:2020

    Google Scholar 

  278. Indukuri CSR, Nerella R, Madduru SRC (2020) Workability, microstructure, strength properties and durability properties of graphene oxide reinforced cement paste. Aust J Civ Eng 18(1):73–81

    Article  Google Scholar 

  279. Sun H, Ling L, Ren Z, Memon SA, Xing F (2020) Effect of graphene oxide/graphene hybrid on mechanical properties of cement mortar and mechanism investigation. Nanomaterials 10(1):113

    Article  CAS  Google Scholar 

  280. Zheng K, Guo Z, Cui N, Li Q, Feng L (2020) Effects of graphene oxide on the hydration of tricalcium silicate. Ceram - Silikaty 64(4):460–468

    Article  CAS  Google Scholar 

  281. Liu Y et al (2020) Enhancing ultra-early strength of sulphoaluminate cement-based materials by incorporating graphene oxide. Nanotechnol Rev 9(1):17–27

    Article  Google Scholar 

  282. Adel M, Ahmed MA, Mohamed AA (2021) Synthesis and characterization of magnetically separable and recyclable crumbled MgFe2O4/reduced graphene oxide nanoparticles for removal of methylene blue dye from aqueous solutions. J Phys Chem Solids 149:109760

    Article  CAS  Google Scholar 

  283. Rhazouani A et al (2021) Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. Biomed Res Int 2021:1–19

    Article  Google Scholar 

  284. Spilarewicz-Stanek K, Jakimińska A, Kisielewska A, Dudek M, Piwoński I (2021) Graphene oxide photochemical transformations induced by UV irradiation during photocatalytic processes. Mater Sci Semicond Process 123:105525

    Article  CAS  Google Scholar 

  285. Ge W, Ma Q, Wang W, Jia F, Song S (2021) Synthesis of three-dimensional reduced graphene oxide aerogels as electrode material for supercapacitor application. Chem Phys 543:111096

    Article  CAS  Google Scholar 

  286. Indukuri CSR, Nerella R (2021) Enhanced transport properties of graphene oxide based cement composite material. J Build Eng 37:102174

    Article  Google Scholar 

  287. Huo Z et al (2021) Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance. Carbohydr Polym 256:117575

    Article  CAS  Google Scholar 

  288. Liu C, Liu Y, Dang Z, Zeng S, Li C (2021) Enhancement of heterogeneous photo-Fenton performance of core-shell structured boron-doped reduced graphene oxide wrapped magnetical Fe3O4 nanoparticles: Fe(II)/Fe(III) redox and mechanism. Appl Surf Sci 544:148886

    Article  CAS  Google Scholar 

  289. Muthu M, Yang E-H, Unluer C (2021) Resistance of graphene oxide-modified cement pastes to hydrochloric acid attack. Constr Build Mater 273:121990

    Article  CAS  Google Scholar 

  290. Luo J, Fan C, Zhou X (2021) Functionalized graphene oxide/carboxymethyl chitosan composite aerogels with strong compressive strength for water purification. J Appl Polym Sci 138(12):12–13

    Article  Google Scholar 

  291. Kwon Y, Liu M, Castilho C, Saleeba Z, Hurt R, Külaots I (2021) Controlling pore structure and conductivity in graphene nanosheet films through partial thermal exfoliation. Carbon N Y 174:227–239

    Article  CAS  Google Scholar 

  292. Wang B et al (2021) Carbon-based 0D/1D/2D assembly with desired structures and defect states as non-metal bifunctional electrocatalyst for zinc-air battery. J Colloid Interface Sci 588:184–195

    Article  CAS  Google Scholar 

  293. Yang Y et al (2021) Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioact Mater 6(5):1230–1241

    Article  CAS  Google Scholar 

  294. Zeng H, Lai Y, Qu S, Yu F (2021) Effect of graphene oxide on permeability of cement materials: an experimental and theoretical perspective. J Build Eng 41:102326

    Article  Google Scholar 

  295. Liu C, Huang X, Wu YY, Deng X, Zheng Z (2021) The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures. Constr Build Mater 288:123059

    Article  Google Scholar 

  296. Ho VD, Gholampour A, Losic D, Ozbakkaloglu T (2021) Enhancing the performance and environmental impact of alkali-activated binder-based composites containing graphene oxide and industrial by-products. Constr Build Mater 284:122811

    Article  CAS  Google Scholar 

  297. Kaur R, Kothiyal NC, Arora H (2020) Studies on combined effect of superplasticizer modified graphene oxide and carbon nanotubes on the physico-mechanical strength and electrical resistivity of fly ash blended cement mortar. J Build Eng 30:101304

    Article  Google Scholar 

  298. Wei Z, Wang Y, Qi M, Bi J, Yang S, Yuan X (2021) The role of sucrose on enhancing properties of graphene oxide reinforced cement composites containing fly ash. Constr Build Mater 293:123507

    Article  CAS  Google Scholar 

  299. Zhu X, Kang X, Deng J, Yang K (2021) A comparative study on shrinkage characteristics of graphene oxide (GO) and graphene nanoplatelets (GNPs) modified alkali-activated slag cement composites. Mater Struct 54(106):1–15

    Google Scholar 

  300. Prasad J, Singh AK, Tomar M, Gupta V, Singh K (2021) Hydrothermal synthesis of micro-flower like morphology aluminum-doped MoS2/rGO nanohybrids for high efficient electromagnetic wave shielding materials. Ceram Int 47(11):15648–15660

    Article  CAS  Google Scholar 

  301. Owji E, Mokhtari H, Ostovari F, Darazereshki B, Shakiba N (2021) 2D materials coated on etched optical fibers as humidity sensor. Sci Rep 11(1):1–10

    Article  Google Scholar 

  302. Florek P, Król M, Jeleń P, Mozgawa W (2021) Carbon fiber reinforced polymer composites doped with graphene oxide in light of spectroscopic studies. Materials (Basel) 14(8):1835

    Article  CAS  Google Scholar 

  303. Qin W, Guodong Q, Dafu Z, Yue W, Haiyu Z (2021) Influence of the molecular structure of a polycarboxylate superplasticiser on the dispersion of graphene oxide in cement pore solutions and cement-based composites. Constr Build Mater 272:121969

    Article  CAS  Google Scholar 

  304. Qi X, Zhang S, Wang T, Guo S, Ren R (2021) Effect of high-dispersible graphene on the strength and durability of cement mortars. Materials (Basel) 14(4):1–17

    Article  Google Scholar 

  305. Muthu M, Ukrainczyk N, Koenders E (2021) Effect of graphene oxide dosage on the deterioration properties of cement pastes exposed to an intense nitric acid environment. Constr Build Mater 269:121272

    Article  CAS  Google Scholar 

  306. Fan D, Yang S, Saafi M (2021) Molecular dynamics simulation of mechanical properties of intercalated GO/C-S-H nanocomposites. Comput Mater Sci 186:110012

    Article  CAS  Google Scholar 

  307. Koçanalı A, KApaydın Varol E (2021) An experimental study on the electrical and thermal performance of reduced graphene oxide coated cotton fabric. Int J Energy Res 200:1–13

    Google Scholar 

  308. Ghosh D, Sarkar K, Devi P, Kim KH, Kumar P (2020) Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices. Renew Sustain Energy Rev 135(July):2021

    Google Scholar 

  309. Ortega-Jimenez CH et al (2020) Current research and future perspectives on graphene synthesis. MATEC Web Conf 319:10001

    Article  CAS  Google Scholar 

  310. Peleg R (2021) Graphene-based concrete used in a commercial setting for the first time. Graphene-info. https://www.graphene-info.com/graphene-based-concrete-used-commercial-setting-first-time

  311. Wade A (2021) Graphene-doped concrete cuts construction emissions. Eureka 1–5

Download references

Acknowledgements

The authors would like to acknowledge the National Taiwan University of Science and Technology (NTUST), Taiwan to facilitate this research study.

Funding

The authors would like to thank the National Taiwan University of Science and Technology (NTUST) for financing the research project under Research Scholarship 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Anwar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, A., Chang, TP. & Chen, CT. Graphene oxide synthesis using a top–down approach and discrete characterization techniques: a holistic review. Carbon Lett. 32, 1–38 (2022). https://doi.org/10.1007/s42823-021-00272-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00272-z

Keywords

Navigation