Skip to main content
Log in

Artificial intelligence to predict climate and weather change

  • Letter
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

In recent years, the risk of natural disasters has been on the rise due to climate change and extreme weather events driven by global warming, thereby increasing the need for technology that can predict them. Existing weather forecasting technologies that are based on physical and numerical models are not highly accurate and have limitations as certain variables such as global warming are not taken into account. This paper will introduce technologies that utilize artificial intelligence to predict long-term climate change and short- to medium-term extreme weather events. These technologies are not only being actively researched at the basic level, but also are gradually being applied commercially.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Graphical products from these experimental models are provided under a CC-BY-NC-SA-4 licence and ECMWF Terms of Use (https://charts.ecmwf.int/products/graphcast_medium-mslp-wind850).

References

  1. J. Douris, G. Kim. The Atlas of mortality and economic losses from weather, climate and water extremes (1970–2019), World Meteorological Organization (WMO) (2021)

  2. K. Ashok, T. Yamagata, The El Niño with a difference. Nature 461, 481–484 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. A.G. Barnston, M.H. Glantz, Y. He, Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Am. Meteorol. Soc. 80(2), 217–244 (1999)

    Article  ADS  Google Scholar 

  4. R.H. Weisberg, C. Wang, A western Pacific oscillator paradigm for the El Niñosouthern oscillation. Geophys. Res. Lett. 24(7), 779–782 (1997)

    Article  ADS  Google Scholar 

  5. J. Picaut, F. Masia, Y. du Penhoat, An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277(5326), 663–666 (1997)

    Article  CAS  Google Scholar 

  6. F. Zheng, J. Zhu, Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Global Planet. Change 72(3), 108–117 (2010)

    Article  ADS  Google Scholar 

  7. F. Mekanik, M. Imteaz, A multivariate artificial neural network approach for rainfall forecasting: case study of Victoria, Australia, World Congress on Engineering and Computer Science (WCECS 2012), pp. 557–561

  8. Y.G. Ham, J.H. Kim, J.J. Luo, Deep learning for multi-year ENSO forecasts. Nature 573(7775), 568–572 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. N. Adebisi, A.L. Balogun, T.H. Min, A. Tella, Advances in estimating sea level rise: a review of tide gauge, satellite altimetry and spatial data science approaches. Ocean Coast. Manag. 208, 105632 (2021)

    Article  Google Scholar 

  10. A. Cazenave, W. Llovel, Contemporary sea level rise. Ann. Rev. Mar. Sci. 2(1), 145–173 (2010)

    Article  PubMed  Google Scholar 

  11. N.A.A.B.S. Bahari, A.N. Ahmed, K.L. Chong, V. Lai, Y.F. Huang, C.H. Koo, J.L. Ng, A. El-Shafie, Predicting sea level rise using artificial intelligence: a review, Archives of Computational Methods in Engineering, 1 (18) (2023)

  12. E. Mlybari, M. Elbisy, A. Alshahri, O. Albarakati, The use support vector machine and back propagation neural network for prediction of daily tidal levels along the Jeddah Coast, Saudi Arabia. Int. J. Civ. Environ. Eng. 8(1), 13–18 (2014)

    Google Scholar 

  13. M.E. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1(June), 211–244 (2001)

    MathSciNet  Google Scholar 

  14. M. Imani, H.C. Kao, W.H. Lan, C.Y. Kuo, Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine, Global Planet. Change 161, 211–221 (2018)

    Google Scholar 

  15. Global Climate Change: Evidence (2008) Retrieved December 26, 2023, from http://climate.nasa.gov/evidence/. Accessed 13 Feb 2024

  16. A.L. Balogun, N. Adebisi, Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble ocean-atmospheric processes on models’ accuracy. Geomat. Nat. Haz. Risk 12(1), 653–674 (2021)

    Article  Google Scholar 

  17. K. Ishida, G. Tsujimoto, A. Ercan, T. Tu, M. Kiyama, M. Amagasaki, Hourly-scale coastal sea level modeling in a changing climate using long short-term memory neural network. Sci. Total. Environ. 720, 137613 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Korea Meteorological Administration. Typhoon White Book. Korea Meteorological Administration (2011)

  19. T. Knutson, S.J. Camargo, J.C. Chan, K. Emanuel, C.H. Ho, J. Kossin, M. Mohapatra, M. Satoh, M. Sugi, K. Walsh, L. Wu, Tropical cyclones and climate change assessment: Part II: projected response to anthropogenic warming. Bull. Am. Meteor. Soc. 101(3), E303–E322 (2020)

    Article  Google Scholar 

  20. R.S. Lee, J.N. Liu, Tropical cyclone identification and tracking system using integrated neural oscillatory elastic graph matching and hybrid RBF network track mining techniques. IEEE Trans. Neural Netw. 11(3), 680–689 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. R. Kovordányi, C. Roy, Cyclone track forecasting based on satellite images using artificial neural networks. ISPRS J. Photogramm. Remote Sens. 64(6), 513–521 (2009)

    Article  ADS  Google Scholar 

  22. S. Hong, S. Kim, M. Joh, S.K. Song, Globenet: convolutional neural networks for typhoon eye tracking from remote sensing imagery. arXiv 1708, 03417 (2017)

    Google Scholar 

  23. M. Moradi Kordmahalleh, M. Gorji Sefidmazgi, A. Homaifar, A sparse recurrent neural network for trajectory prediction of atlantic hurricanes. Proceedings of the Genetic and Evolutionary Computation Conference 2016, Colorado, USA, pp. 957–964

  24. Y. Zhang, R. Chandra, J. Gao, Cyclone track prediction with matrix neural networks, 2018 International Joint Conference on Neural Networks (IJCNN), Rio, Brazil, pp. 1–8

  25. M. Rüttgers, S. Lee, S. Jeon, D. You, Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 9(1), 6057 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. M. Rüttgers, S. Jeon, S. Lee, D. You, Prediction of typhoon track and intensity using a generative adversarial network with observational and meteorological data. IEEE Access 10, 48434–48446 (2022)

    Article  Google Scholar 

  27. Y. Wang, L. Han, Y.J. Lin, Y. Shen, W. Zhang, A tropical cyclone similarity search algorithm based on deep learning method. Atmos. Res. 214, 386–398 (2018)

    Article  Google Scholar 

  28. R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, M.F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, P. Battaglia, Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  29. K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, Q. Tian, Accurate medium-range global weather forecasting with 3D neural networks. Nature 619(7970), 533–538 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. European Centre for Medium Range Weather Forecast (ECMWF), Feb. 2024, [online] Available: https://charts.ecmwf.int/products/graphcast_medium-mslp-wind850. Accessed 13 Feb 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soohwan Jeon.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Kim, J. Artificial intelligence to predict climate and weather change. JMST Adv. 6, 67–73 (2024). https://doi.org/10.1007/s42791-024-00068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-024-00068-y

Keywords

Navigation