Skip to main content
Log in

Partial genomic characterization of Chromobacterium piscinae from India reveals multi drug resistance

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Species of genus Chromobacterium have been isolated from diverse geographical settings, which exhibits significant metabolic flexibility as well as biotechnological and pathogenic properties. This study describes the isolation, characterization, draft assembly, and detailed sequence analysis of Chromobacterium piscinae strain W1B-CG-NIBSM isolated from water samples from multi use community pond. The organism was characterized by biochemical tests, Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI TOF–MS) and partial genome sequencing. The partial genomic data of Chromobacterium pisciane isolate W1B NIBSM strain was submitted to GenBank with Bio project number PRJNA803347 and accession no CP092474. An integrated genome analysis of Chromobacterium piscinae has been accomplished with PATRIC which indicates good quality genome. DNA sequencing using the illumina HiSeq 4000 system generated total length of 4,155,481 bp with 63 contig with G + C content is 62.69%. This partial genome contains 4,126 protein-coding sequences (CDS), 27 repeats region and 78 transfer RNA (tRNA) genes as well as 3 ribosomal RNA (rRNA) genes. The genomic annotation of Chromobacterium W1B depicts 2,925 proteins with functional assignments and 1201 hypothetical proteins. A repertoire of specialty genes implicated in antibiotic resistance (45 genes), drug target (6 genes), Transporter (3 genes) and virulence factor (10 genes). The genomic analysis reveals the adaptability, displays metabolic varied pathways and shows specific structural complex and various virulence factors which makes this strain multi drug resistant. The isolate was found to be highly resistant to β-lactam antibiotics whereas it showed sensitivity towards aminoglycosides and fluoroquinolone antibiotics. Hence, the recovery of Chromobacterium piscinae from community pond evidenced for uncertain hidden source of public health hazard. To the best of authors knowledge this is first report of isolation and genomic description of C. piscinae from India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The bacterial partial genome sequence for Chromobacterium spp. has been deposited under the bio project number PRJNA803347 and BioSample number SAMN25648687 and SRA accession number PRJNA803347 and in NCBI/DDBJ/EMBL GenBank under accession number CP092474.

References

  1. Kampfer P, Busse HJ, Scholz HC (2009) Chromobacterium piscinae sp. nov. and chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol 59(10):2486–90. https://doi.org/10.1099/ijs.0.008888-0

    Article  CAS  PubMed  Google Scholar 

  2. Adeolu M, Gupta RS (2013) Phylogenomics and molecular signatures for the order neisseriales: proposal for division of the order neisseriales into the emended family neisseriaceae and chromobacteriaceae fam nov. Antonie Van Leeuwenhoek 104(1):1–24. https://doi.org/10.1007/s10482-013-9920-6

    Article  PubMed  Google Scholar 

  3. Alexandre BS, Patrícia SC, Anderson OC, Gabriel DRF, Larissa LSS, Jeronimo R, Evanguedes K, Edmar CS, Andréa MAN (2018) Insights into the genome sequence of chromobacterium amazonense isolated from a tropical freshwater lake. Intl J Genomics 1062716:10. https://doi.org/10.1155/2018/1062716

    Article  CAS  Google Scholar 

  4. Duran N, Menck CF (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27:201–222. https://doi.org/10.1080/20014091096747

    Article  CAS  PubMed  Google Scholar 

  5. Yang CH, Li YH (2011) Chromobacterium violaceum infection: a clinical review of an important but neglected infection. J Chinese Med Asso 74(10):435–441. https://doi.org/10.1016/jjcma201108013

    Article  Google Scholar 

  6. Kaniyarakkal V, Orvankundil S, Karunakaran S, Thazhethekandi LR Thottathil J (2016) Chromobacterium violaceum septicaemia and urinary tract infection: case reports from a tertiary care hospital in south india Case Rep Infect Dis 6795743 https://doi.org/10.1155/2016/6795743

  7. Batista JH, da Silva Neto JF (2017) Chromobacterium violaceum pathogenicity: updates and insights from genome sequencing of novel chromobacterium species. Front Microbiol 8:2213. https://doi.org/10.3389/fmicb201702213

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tay SB, Natarajan G, Rahim MNBA, Tan HT, Chung MCM, Ting YP, Yew WS (2013) Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in chromobacterium violaceum. Sci Rep 3:1–7. https://doi.org/10.1038/srep02236

    Article  Google Scholar 

  9. Mcclean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiol 143:3703–3711. https://doi.org/10.1099/00221287-143-12-3703

    Article  CAS  Google Scholar 

  10. Duran N, Justo GZ, Duran M, Brocchi M, Cordi L, Tasic L (2016) Advances in Chromobacterium violaceum and properties of violacein-its main secondary metabolite: a review. Biotech Adv 34:1030–1045. https://doi.org/10.1016/jbiotechadv201606003

    Article  CAS  Google Scholar 

  11. Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barandi CRM, Simoes CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98:834–848

    Article  Google Scholar 

  12. Duran N, Erazo S, Campos V (1983) Bacterial chemistry-ii antimicrobial photoproduct from pigment of chromobacterium violaceum. An Acad Bras Ciênc 55:231–234

    CAS  Google Scholar 

  13. Baskar K, Ignacimuthu S (2012) Bioefficacy of violacein against asian armyworm spodoptera litura fab (Lepidoptera: Noctuidae). J Saudi Soc Agri Sci 11:73–77. https://doi.org/10.1016/jjssas201110002

    Article  CAS  Google Scholar 

  14. Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FTM (2009) Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicro Agents Chemother 53:2149–2152. https://doi.org/10.1128/AAC00693-08

    Article  CAS  Google Scholar 

  15. Shirata A, Tsukamoto T, Yasui H, Kato H, Hayasaka S, Kojima A (1997) Production of bluish-purple pigments by janthinobacterium lividum isolated from the raw silk and dyeing with them. Nippon Sanshigaku Zasshi 66:377–385

    CAS  Google Scholar 

  16. Bassey IU, Andy IE, Unimke AA, Akpanke J (2018) Hydrocarbon degrading potentials of chromobacterium violaceum, bacillus subtilis and micrococcus luteus isolated from lemna waste dumpsite, cross river state. Niger Int J Sci Res Pub 8:1029322. https://doi.org/10.29322/IJSRP8112018p8317

    Article  Google Scholar 

  17. Duran N, Justo GZ, Melo PS, Martins D, Cordi L (2007) Violacein: properties and biological activities. Biotech Appl Biochem 48:127–133. https://doi.org/10.1042/BA20070115

    Article  CAS  Google Scholar 

  18. Menezes CBA, Silva BP, Sousa IMO, Ruiz AL, Spindola HM, Cabral EC, Eberlin MN, Tinti SV, Carvalho JE (2013) In vitro and in vivo antitumor activity of crude extracts obtained from brazilian chromobacterium sp isolates. Brazilian J Med Biol Res 46z:65–70. https://doi.org/10.1590/S0100-879X2012007500167

    Article  CAS  Google Scholar 

  19. Choi SY, Yoon K Lee JI, Mitchell RJ (2015) Violacein: properties and production of a versatile bacterial pigment BioMed Research Int 465056 https://doi.org/10.1155/2015/465056

  20. da Gama AM, de Almeida LG, Yamane T, Spira B (2018) Two draft genome sequences of chromobacterium violaceum isolates from the Rio Negro. Genome Announc 6:e01348-17. https://doi.org/10.1128/genomeA01348-17

    Article  Google Scholar 

  21. Quinn PJ, Carter ME, Markey BK (2013) Clinical veterinary microbiology, 2dn edn. Mosby, Incorporated, London

    Google Scholar 

  22. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM02272-07

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrews S (2010) Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformaticsbabrahamacuk/projects/fastqc. Accessed 16 Aug 2018

  24. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595-. https://doi.org/10.1371/journalpcbi1005595

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9(11):e112963. https://doi.org/10.1371/journalpone0112963

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5(1):8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Stevens RL (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource centre. Nucleic Acids Res 45(1):D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  28. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(1):D431–D433. https://doi.org/10.1093/nar/gkh081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(1):D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  PubMed  Google Scholar 

  31. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Yoo H (2016) Pattyfams: Protein families for the microbial genomes in the patric database. Front Microbiol 7:118. https://doi.org/10.3389/fmicb201600118

    Article  PubMed  PubMed Central  Google Scholar 

  32. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702. https://doi.org/10.1093/nar/gki866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dey S, Gaur M, Sykes EM, Prusty M, Elangovan S, Dixit S, Subudhi E (2023) Unravelling the evolutionary dynamics of high-risk klebsiella pneumoniae st147 clones: insights from comparative pangenome analysis. Genes 14(5):1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Klimke W (2019) Validating the amrfinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 63(11):10–1128

    Article  Google Scholar 

  35. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang K, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi, S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45(D1):D566–D573. https://doi.org/10.1093/nar/gkw1004

  36. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58(1):212–220

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 44(D1):D694–D697. https://doi.org/10.1093/nar/gkv1239

    Article  CAS  PubMed  Google Scholar 

  39. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, Holt KE (2016) In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O: H serotype combinations within and between pathogenic lineages. Microbial Genomics 2(7):e000064

    Article  PubMed  PubMed Central  Google Scholar 

  41. Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, Morley PS (2020) MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48(D1):D561–D569

    Article  CAS  PubMed  Google Scholar 

  42. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology 17(1):1–14. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  Google Scholar 

  43. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Boil. 57(5):758–771. https://doi.org/10.1080/10635150802429642

    Article  Google Scholar 

  46. Ray P, Sharma J, Marak RS, Singhi S, Taneja N, Garg RK (2004) Chromobacterium violaceum septicaemia from North India. Indian J Med Res 120:523–526

    PubMed  Google Scholar 

  47. Menezes CB, Tonin MF, Corrêa DB, Parma M, de Melo IS, Zucchi TD (2015) Chromobacterium amazonense sp nov isolated from water samples from the Rio Negro, Amazon Brazil. Antonie Van Leeuwenhoek 107:1057–1063. https://doi.org/10.1007/s10482-015-0397-3

    Article  CAS  PubMed  Google Scholar 

  48. Egorova DA, Voronina OL, Solovyev AI, Kunda MS, Aksenova EI, Ryzhova NN, Danilova KV, Rykova VS, Scherbakova AA, Semenov AN, Polyakov NB, Grumov DA, Shevlyagina NV, Dolzhikova IV, Romanova YM, Gintsburg AL (2020) Integrated into environmental biofilm chromobacterium vaccinii survives winter with support of bacterial community. Microorganisms 8:1696. https://doi.org/10.3390/microorganisms8111696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ponte R, Jenkins SG (1992) Fatal chromobacterium violaceum infections associataed with exposure to stagnant water. Pediatr Infect Dis J 11:583e6

    Article  Google Scholar 

  50. Koburger JA, May SO (1982) Isolation of chromobacterium spp from foods, soil, and water. Appl Environ Microbiol 44:1463e5

    Article  Google Scholar 

  51. Sneath PH, Whelan JP, Singh BR, Edwards D (1953) Fatal infection by chromobacterium violaceum. Lancet 265:276–277. https://doi.org/10.1016/S0140-6736(53)91132-5

    Article  CAS  PubMed  Google Scholar 

  52. Sampson K, Zaitseva J, Stauffer M, Vande Berg B, Guo R, Tomso D, McNulty B, Desai N, Balasubramanian D (2017) Discovery of a novel insecticidal protein from Chromobacterium piscinae, with activity against Western corn rootworm, Diabrotica virgifera virgifera. J Invertebr Pathol 142:34–43. https://doi.org/10.1016/j.jip.2016.10.004. ISSN 0022-2011

  53. Mun W, Kwon H, Im H, Choi SY, Monnappa AK, Mitchell RJ (2017) Cyanide production by chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. mBio 8:e01370-17. https://doi.org/10.1128/mBio.01370-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zaitsevaa J, Vaknina D, Krebsb K, Doroghazic J, Milama SL, Balasubramanianb D, Ducka NB, Freigang J (2019) Structure–function characterization of an insecticidal protein GNIP1Aa, a member of an MACPF and β-tripod families. PNAS 116(8):2897–2906. https://doi.org/10.1073/pnas.1815547116

    Article  ADS  CAS  Google Scholar 

  55. Aldridge KE, Valainis GT, Sanders CV (1988) Comparison of the in vitro activity of ciprofloxacin and 24 other antimicrobial agents against clinical strains of chromobacterium violaceum. Diag Microbiol Infec Dis 10:31–39. https://doi.org/10.1016/0732-8893(88)90124-1

    Article  CAS  Google Scholar 

  56. Nanayakkara GM, Pethiyagoda P, Jayasinghe PN, Premachandra U (2008) Chromobacterium violaceum infection in a provincial hospital in Sri Lanka. Ceylon Medl J 53:156–157

    Article  Google Scholar 

  57. Ke L, An KP, Heng S, Riley M, Sona S, Moore CE (2012) Paediatric chromobacterium violaceum in Cambodia: the first documented case. Trop Doc 42:178–179. https://doi.org/10.1258/td2012120054

    Article  Google Scholar 

  58. Pant ND, Acharya SP, Bhandari R, Yadav UN, Saru DB, Sharma M (2017) Bacteremia and urinary tract infection caused by chromobacterium violaceum: case reports from a tertiary care hospital in Kathmandu. Nepal Case Rep Med 7929671. https://doi.org/10.1155/2017/7929671

  59. Farrar WE, O’Dell NM (1976) β-lactamase activity in chromobacterium violaceum. J Infect Dis 134:290e3

    Article  Google Scholar 

  60. Sirinavin S, Techasaensiri C, Benjaponpitak S, Pornkul R, Vorachit M (2005) Invasive chromobacterium violaceum infection in children: case report and review. Pedia Infec Dis J 24:559e61

    Article  Google Scholar 

  61. Martinez R, Velludo MASL, Santos VR, Dinamarco PV (2000) Chromobacterium violaceum infection in Brazil A case report. Rev Inst Med Trop S Paulo 42:111–113. https://doi.org/10.1016/jjcma201108013

    Article  CAS  PubMed  Google Scholar 

  62. Baker S, Campbell JI, Stabler R, Nguyen HVM, To DS, Nguyen DV (2008) Fatal wound infection caused by chromobacterium violaceum in Ho Chi Minh City Vietnam. J Clin Microbiol 46:3853–3855. https://doi.org/10.1128/JCM01068-08

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ansari S, Paudel P, Gautam K, Shrestha S, Thapa S, Gautam R (2015) Chromobacterium violaceum isolated from a wound sepsis: a case study from Nepal. Case Rep Infec Dis 181946. https://doi.org/10.1155/2015/181946

  64. Madi DR, Vidyalakshmi K, Ramapuram J, Shetty AK (2015) Case report: successful treatment of chromobacterium violaceum sepsis in a south Indian adult American. J Trop Med Hyg 93(5):1066–1067. https://doi.org/10.4269/ajtmh15-0226

    Article  CAS  Google Scholar 

  65. Teoh YB, Hui MK, Ngo Y, Wong J, Lee KF, Lai PBS (2006) Fatal septicaemia from Chromobacterium violaceum: case reports and review of the literature. Hong Kong Med J 12(3):228–231

    CAS  PubMed  Google Scholar 

  66. Carter E, Cain K, Rutland B (2008) Chromobacterium violaceum cellulitis and sepsis following cutaneous marine trauma. Cutis 81(3):269–272

    PubMed  Google Scholar 

  67. Swain B, Otta S, Sahu KK, Panda K, Rout S (2014) Urinary tract infection by chromobacterium violaceum. J Clin Diag Res 8:DD01–DD02. https://doi.org/10.7860/JCDR/2014/92304703

    Article  Google Scholar 

  68. Shenoy S, Baliga S, Wilson G, Kamath N (2002) Chromobacterium violaceum septicemia Indian. J Pedia 69:363–364. https://doi.org/10.1007/BF02723225

    Article  Google Scholar 

  69. Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44(D1):D372–D379. https://doi.org/10.1093/nar/gkv11038

    Article  CAS  PubMed  Google Scholar 

  70. Mao C, Abraham D, Wattam AR, Wilson MJ, Shukl M, Yoo HS, Sobral BW (2015) Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 31(2):252–258. https://doi.org/10.1093/bioinformatics/btu631

    Article  CAS  PubMed  Google Scholar 

  71. Zhu F, Han B, Kumar P, Liu X, Ma X, Wei X, Chen Y (2010) Update of TTD: therapeutic target database. Nucleic Acids Res 38(1):D787–D791. https://doi.org/10.1093/nar/gkp1014

    Article  CAS  PubMed  Google Scholar 

  72. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Wishart DS (2014) DrugBank 40: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):D1091–D1097. https://doi.org/10.1093/nar/gkt1068

    Article  CAS  PubMed  Google Scholar 

  73. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicro Agents Chemother 57(7):3348–3357. https://doi.org/10.1128/AAC00419-13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Director and Joint Director (Research) of ICAR-NIBSM, Raipur, for providing the all-necessary facilities to carry out this work. This research article is contribution number ICAR-NIBSM-PME/RP-41/2022-5 from ICAR-NIBSM, Raipur, India.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, BKC, MC, SBB; methodology, BKC, MC, SBB, AS; formal analysis and data curation AS, BKC, MC and SBB; writing original draft preparation BKC, MC, SBB and AS; writing, review and editing, BKC, MC, SBB and AS. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Binod Kumar Choudhary.

Ethics declarations

Consent to participate

All co-authors gave their consent to participate in the development of this work.

Consent for publication

All co-authors gave their consent to publish this work.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Luc F.M. Rouws

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, B.K., Choudhary, M., Barbuddhe, S.B. et al. Partial genomic characterization of Chromobacterium piscinae from India reveals multi drug resistance. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01288-z

Keywords

Navigation