Skip to main content
Log in

Influences of plant organ, genotype, and cultivation site on the endophytic bacteriome of maize (Zea mays L.) in the semi-arid region of Pernambuco, Brazil

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytic bacteria play a crucial role in plant development and adaptation, and the knowledge of how endophytic bacteria assemblage is influenced by cultivation site and plant genotype is an important step to achieve microbiome manipulation. This work aimed to study the roots and stems of endophytic bacteriome of four maize genotypes cultivated in two regions of the semi-arid region of Pernambuco - Brazil. Our hypothesis is that the endophytic community assemblage will be influenced by plant genotypes and cultivation region. Metabarcoding sequencing data revealed significant differences in alfa diversity in function of both factors, genotypes, and maize organs. Beta diversity analysis showed that the bacterial communities differ mainly in function of the plant organ. The most abundant genera found in the samples were Leifsonia, Bacillus, Klebsiella, Streptomyces, and Bradyrhizobium. To understand ecological interactions within each compartment, we constructed co-occurrence network for each organ. This analysis revealed important differences in network structure and complexity and suggested that Leifsonia (the main genera found) had distinct ecological roles depending on the plant organ. Our data showed that root endophytic maize bacteria would be influenced by cultivation site, but not by genotype. We believe that, collectively, our data not only characterize the bacteriome associated with this plant and how different factors shape it, but also increase the knowledge to select potential bacteria for bioinoculant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw sequences were deposited in the NCBI Sequence Read Archive (SRA) and are available under Bioproject PRJNA846726.

References

  1. Silva RCDD (2020) Fertilização Organomineral no milho em condições de Cerrado. https://repositorio.ufu.br/handle/123456789/31263

  2. Hara S, Morikawa T, Wasai S et al (2019) Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front Microbiol 10:407. https://doi.org/10.3389/fmicb.2019.00407

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barros BGDF, Freitas ADSD, Tabosa JN et al (2020) Biological nitrogen fixation in field-grown sorghum under different edaphoclimatic conditions is confirmed by N isotopic signatures. Nutr Cycl Agoecosys 117:93–101. https://doi.org/10.1016/j.agrformet.2005.03.009

    Article  CAS  Google Scholar 

  4. Ullah A, Mushtaq H, Fahad S et al (2017) Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology 86(1):119–127. https://doi.org/10.1134/S0026261717010155

    Article  CAS  Google Scholar 

  5. Kusale SP, Attar YC, Sayyed RZ et al (2021) Inoculation of Klebsiella variicola alleviated salt stress and improved growth and nutrients in wheat and maize. Agronomy 11:927

    Article  CAS  Google Scholar 

  6. Yeoh YK, Dennis PG, Paungfoo-Lonhienne C et al (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8. https://doi.org/10.1038/s41467-017-00262-8

  7. Favela A, Bohn MO, Kent AD (2021) Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME J 15:2454–2464. https://doi.org/10.1038/s41396-021-00923-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang L, Zhang M, Huang S et al (2022) A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nat Commun 13. https://doi.org/10.1038/s41467-022-31113-w

  9. Backer R, Rokem JS, Ilangumaran G et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 871:1–17. https://doi.org/10.3389/fpls.2018.01473

    Article  Google Scholar 

  10. Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835. https://doi.org/10.1007/s00253-018-9214-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gouda S, Kerry RG, Das G et al (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  12. Rosier A, Medeiros FHV, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428:35–55. https://doi.org/10.1007/s11104-018-3679-5

    Article  CAS  Google Scholar 

  13. Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep 4:1–10. https://doi.org/10.1038/srep06261

    Article  CAS  Google Scholar 

  14. Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de Métodos de Análise de Solo. Embrapa, Brasília, DF Available at: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1085209/1/ManualdeMetodosdeAnalisedeSolo2017.pdf

    Google Scholar 

  15. Unkovich M, Herridge D, Peoples M et al (2008) Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia

    Google Scholar 

  16. Araujo WL, Maccheroni JW, Aguilar-Vildoso CI et al (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  CAS  PubMed  Google Scholar 

  17. Amplicon PCR, Clean-Up PCR, Index PCR (2013) 16s metagenomic sequencing library preparation. Illumina, San Diego, CA, USA

    Google Scholar 

  18. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  20. Fox J, Weisberg S (2018) An R companion to applied regression. Sage publications 978-1-5443-3647-3

    Google Scholar 

  21. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package. Palaeontol Electron 4:1–9. https://doi.org/10.1016/j.bcp.2008.05.025

    Article  CAS  Google Scholar 

  22. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faust K, Raes J (2016) CoNet app: inference of biological association networks using Cytoscape. F1000Research 5:1–14. https://doi.org/10.12688/F1000RESEARCH.9050.1

    Article  Google Scholar 

  25. Neu AT, Allen EE, Roy K (2021) Defining and quantifying the core microbiome: challenges and prospects. PNAS 118:e2104429118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peiffer JA, Spor A, Koren et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–6553

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benitez MS, Osborne SL, Lehman RM (2017) Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-017-15955-9

    Article  CAS  Google Scholar 

  28. Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren O, Shi Q, Knight R, Glavina Del Rio T, Tringe SG, Buckler ES, Dangl JL, Ley RE (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci U S A 115(28):7368–7373. https://doi.org/10.1073/pnas.1800918115

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Beirinckx S, Viaene T, Haegeman A et al (2020) Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome 9:1–13. https://doi.org/10.1186/s40168-020-00833-w

    Article  CAS  Google Scholar 

  30. Quecine MC, Silva TM, Carvalho G et al (2016) A stable Leifsonia xyli subsp. xyli GFP-tagged strain reveals a new colonization niche in sugarcane tissues. Plant Pathol 65(1):154–162. https://doi.org/10.1111/ppa.12397

    Article  CAS  Google Scholar 

  31. Schultz CR, Brantley KM, Wallace JG (2022) The role of genetic variation in Zea mays response to beneficial endophytes. Plant Growth Regul 98:168–178. https://doi.org/10.1007/s10725-022-00842-9

    Article  CAS  Google Scholar 

  32. Zhu K, Yuan D, Zhang XQ, Yang LT, Li YR (2018) The physiological characteristics and associated gene expression of sugar cane inoculated with Leifsonia xyli subsp xyli. J Phytopathol 166(1):45–53. https://doi.org/10.1111/jph.12659

    Article  CAS  Google Scholar 

  33. Guo Y, Hu M, Liu LL, Yao W, Zhang MQ (2019) Activities of key enzymes in the C4 pathway and anatomy of sugarcane infected by Leifsonia xyli subsp. xyli. J Appl Microbiol 127(6):1791–1801. https://doi.org/10.1111/jam.14444

    Article  CAS  Google Scholar 

  34. Castro-Moretti FR, Cocuron JC, Cia MC et al (2021) Targeted metabolic profiles of the leaves and xylem sap of two sugarcane genotypes infected with the vascular bacterial pathogen leifsonia xyli subsp. Xyli. Metabolites 11(4). https://doi.org/10.3390/metabo11040234

  35. Lobo LLB, dos Santos RM, Rigobelo EC (2017) Promotion of maize growth using endophytic bacteria under greenhouse and field conditions. Aust J Crop Sci 11(12):2050–2057. https://doi.org/10.21475/ajcs.17.11.12.p2077

    Article  Google Scholar 

  36. de Aquino JPA, de Macedo Junior FB, Antunes JEL, Figueiredo MDVB, de Alcântara Neto F, Araujo AS (2017) Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesqui Agropecu Trop 47:4–10. https://doi.org/10.1590/1983-40632017v4751433

    Article  Google Scholar 

  37. Wahyudi AT, Priyanto JA, Fijrina HN et al (2017) Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas 19(3):1164–1171. https://doi.org/10.13057/biodiv/d180356

    Article  Google Scholar 

  38. Abedinzadeh M, Etesami H, Alikhani HA (2017) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep 19(2017):e00289. https://doi.org/10.1016/j.btre.2017.e00287

    Article  Google Scholar 

  39. Ribeiro VP, Marriel IE, Sousa SM de, et al. (2016) Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian J Microbiol  47(1):15-23. https://doi.org/10.1016/j.bjm.2015.10.024

  40. Mohammed A, Influence of Streptomyces sp (2018) Kp109810 on solubilization of inorganic phosphate and growth of maize (Zea mays L.). J Appl Plant Prot 10(1):18–25. https://doi.org/10.1590/1983-40632018v4843897

    Article  Google Scholar 

  41. Cavalcanti MIP, de Carvalho NR, Rodrigues DR, Escobar IEC, Fraiz ACR, de Souza AP, de Freitas ADS (2018) Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach. Rhizosphere 13:43–49

    Google Scholar 

  42. Mugiastuti E, Suprayogi PN, Soesanto L (2018) Short communication: Isolation and characterization of the endophytic bacteria, and their potential as maize diseases control. Biodiversitas 19(5):1712–1716. https://doi.org/10.13057/biodiv/d190506

    Article  Google Scholar 

  43. AL-Huqail AA, El-Bondkly AMA (2020) Improvement of Zea mays L. growth parameters under chromium and arsenic stress by the heavy metal-resistant Streptomyces sp. NRC21696. Int. J Environ Sci Technol 18(4):778–791. https://doi.org/10.1007/s13762-019-02324-6

    Article  Google Scholar 

  44. Boukaew S, Petlamul W, Phitthayaphinant P, Prasertsan P (2017) Potential use of Streptomyces mycarofaciens SS-2-243 as a biofumigant to protect maize seeds against two aflatoxin producing fungi. Eur J Plant Pathol 150(1):92–107. https://doi.org/10.1007/s10658-017-1169-7

    Article  Google Scholar 

  45. Boukaew S, Petlamul W, Prasertsan P (2018) Efficacy of Streptomyces philanthi RL-1-178 culture filtrate against growth and aflatoxin B1 production by two aflatoxigenic fungi on maize seeds. Eur J Plant Pathol 153(3):850–860. https://doi.org/10.1007/s10658-018-01629-w

    Article  Google Scholar 

  46. Tran TM, Ameye M, Devlieghere F, De Saeger S, Eeckhout M, Audenaert K (2019) Streptomyces strains promote plant growth and induce resistance against Fusarium verticillioides via transient regulation of auxin signaling and archetypal defense pathways in maize plants. Front Plant Sci 11:3–17. https://doi.org/10.3389/fpls.2019.01236

    Article  Google Scholar 

  47. Warrad M, Hassan YM, Mohamed MSM et al (2018) A bioactive fraction from streptomyces sp. enhances maize tolerance against drought stress. J Microbiol Biotechnol 29(11):1814–1825. https://doi.org/10.4014/jmb.1807.07011

    Article  Google Scholar 

  48. Nozari RM, Ortolan F, Astarita LV et al (2019) Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Brazilian J Microbiol 53(2):330–339

    Google Scholar 

  49. Layeghifard M, Hwang DM, Guttman DS (2017 Mar) Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol 26(3):220–231. https://doi.org/10.1016/j.tim.2016.11.008

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Brazilian Council for Scientific and Technological Development (CNPq; Projetos Universal 2018, Grant Numbers 426655/2018-4 and 409519/2018-9). This work is part of the National Observatory of Water and Carbon Dynamics in the Caatinga Biome - NOWCDCB, supported by Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE; APQ-0498-3.07/17 ONDACBC), CNPq (grants: 441305/2017-2; 465764/2014-2), and CAPES (grants: 88887.136369/2017-00). Part of this study was financed by FACEPE (APQ-0420-5.01/18) and Fundação Carlos Chagas Filho de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ). Freitas ADS and Costa CTRC are CNPq Research Productivity Scholars of CNPq (classes 1D and 2, respectively)

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: A.D.S.F, J.N.T, L.R.C.S, and C.T.R.C.C. Field experimentation: L.R.C.S, A.F.M, J.N.T, M.C.C.P.L, and A.D.S.F. Laboratory procedures: L.R.C.S, A.F.M, and M.C.C.P.L. Bioinformatic and statistical analysis: P.S.R.B, D.A.M, and C.T.R.C.C. Drafting of the manuscript: L.R.C.S, P.S.R.B, D.A.M, M.C.C.P.L, and C.T.R.C.C. Critical revision of the manuscript: all authors.

Corresponding author

Correspondence to Caio Tavora Coelho da Costa Rachid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Jerri Zilli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 13171 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L.R.C., Barros, P.S.d., Monteiro, D.A. et al. Influences of plant organ, genotype, and cultivation site on the endophytic bacteriome of maize (Zea mays L.) in the semi-arid region of Pernambuco, Brazil. Braz J Microbiol 55, 789–797 (2024). https://doi.org/10.1007/s42770-023-01221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01221-w

Keywords

Navigation