Skip to main content
Log in

The modification of nisin with homocysteine thiolactone and its effect on antimicrobial activity

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of the present study is to make an important contribution to the literature by focusing on the preparation of the N-homocysteine conjugate of nisin and evaluating the effect of the N-homocysteinylation reaction on its antimicriobial activity. The modification process was monitored using both acetic acid urea polyacrylamide gel electrophoresis (AAU-PAGE) and tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis (tricine SDS-PAGE). The antibacterial effectiveness of modified nisin was assessed against Staphylococcus aureus ATCC 6538, Enterococcus faecium ATCC 9097, Bacillus subtilis ATCC 6633, Lactococcus lactis ssp. cremoris AÜ, Listeria monocytogenes NCTC 5348, and Escherichia coli RSKK. Optimal conditions for achieving the highest N-homocysteinylation degree (6.30%) were determined as 6 mg/mL nisin, 150 mM homocysteine thiolactone, 150 rpm shaking rate, pH of 3.0, and a reaction time of 6 h. The modified nisin obtained did not have a significant inhibitory effect on the strains tested except E. faecium. E. faecium was inhibited by the modified nisin and its antibacterial activity was determined as approximately 10% of the antibacterial activity of unmodified nisin. On the other hand, hydrolysis of nisin by trypsin and thermolysin resulted in significant specific side chain modifications induced by the homocysteine-thiolactone reaction, especially at Lys12 and Lys22. The results provide valuable insights into the potential of N-homocysteinylation to improve the antibacterial properties of nisin and also suggest that the effects of specific modifications identified during the modification process should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68(11):5223–5230. https://doi.org/10.1128/AEM.68.11.5223-5230.2002

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. van Kraaij C, de Vos WM, Siezen RJ, Kuipers OP (1999) Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16(5):575–587. https://doi.org/10.1039/a804531c

    Article  PubMed  Google Scholar 

  3. Brumfitt W, Salton MR, Hamilton-Miller JM (2002) Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 50(5):731–734. https://doi.org/10.1093/jac/dkf190

    Article  CAS  PubMed  Google Scholar 

  4. Khan I, Oh DH (2016) Integration of nisin into nanoparticles for application in foods. Innov Food Sci Emerg Technol 34:376–384. https://doi.org/10.1016/j.ifset.2015.12.013

    Article  CAS  Google Scholar 

  5. O’Connor PM, O’Shea EF, Guinane CM, O’Sullivan O, Cotter PD, Ross RP et al (2015) Nisin H is a new nisin variant produced by the gut-derived strain Streptococcus hyointestinalis DPC6484. Appl Environ Microbiol 81(12):3953–3960. https://doi.org/10.1128/Aem.00212-15

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  6. Zhang Q, Yu Y, Velasquez JE, van der Donk WA (2012) Evolution of lanthipeptide synthetases. Proc Natl Acad Sci USA 109(45):18361–18366. https://doi.org/10.1073/pnas.1210393109

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Field D, Connor PM, Cotter PD, Hill C, Ross RP (2008) The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol 69(1):218–230. https://doi.org/10.1111/j.1365-2958.2008.06279.x

    Article  CAS  PubMed  Google Scholar 

  8. de Arauz LJ, Jozala AF, Mazzola PG, Penna TCV (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20(3-4):146–154

    Article  Google Scholar 

  9. Kruger MF, Barbosa MD, Miranda A, Landgraf M, Destro MT, Todorov SD et al (2013) Isolation of bacteriocinogenic strain of Lactococcus lactis subsp lactis from rocket salad (Eruca sativa Mill.) and evidences of production of a variant of nisin with modification in the leader-peptide. Food Control 33(2):467–476. https://doi.org/10.1016/j.foodcont.2013.03.043

    Article  CAS  Google Scholar 

  10. Guiotto A, Pozzobon M, Canevari M, Manganelli R, Scarin M, Veronese FM (2003) PEGylation of the antimicrobial peptide nisin A: problems and perspectives. Farmaco 58(1):45–50. https://doi.org/10.1016/S0014-827X(02)01301-0

    Article  CAS  PubMed  Google Scholar 

  11. Muppalla SR, Sonavale R, Chawla SP, Sharma A (2012) Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction. Radiat Phys Chem 81(12):1917–1922. https://doi.org/10.1016/j.radphyschem.2012.07.009

    Article  CAS  ADS  Google Scholar 

  12. Zhou L, van Heel AJ, Montalban-Lopez M, Kuipers OP (2016) Potentiating the activity of nisin against Escherichia coli. Front Cell Dev Biol 4:7. https://doi.org/10.3389/fcell.2016.00007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Minten IJ, Abello N, Schooneveld-Bergmans ME, van den Berg MA (2014) Post-production modification of industrial enzymes. Appl Microbiol Biotechnol 98(14):6215–6231. https://doi.org/10.1007/s00253-014-5799-z

    Article  CAS  PubMed  Google Scholar 

  14. Liu W, Hansen JN (1990) Some chemical and physical-properties of nisin, a small-protein antibiotic produced by Lactococcus-Lactis. Appl Environ Microbiol 56(8):2551–2558. https://doi.org/10.1128/Aem.56.8.2551-2558.1990

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Wilson-Stanford S, Kalli A, Hakansson K, Kastrantas J, Orugunty RS, Smith L (2009) Oxidation of lanthionines renders the lantibiotic nisin inactive. Appl Environ Microbiol 75(5):1381–1387. https://doi.org/10.1128/AEM.01864-08

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Joshi PR, McGuire J, Neff JA (2009) Synthesis and antibacterial activity of nisin-containing block copolymers. J Biomed Mater Res B Appl Biomater 91(1):128–134. https://doi.org/10.1002/jbm.b.31381

    Article  CAS  PubMed  Google Scholar 

  17. Abdullah SU, Badaruddin M, Ali R, Riaz MN (2010) Effect of elementary and advanced glycation products of nisin on its preservative efficacy and digestibility. Food Chem 122(4):1043–1046. https://doi.org/10.1016/j.foodchem.2009.07.065

    Article  CAS  Google Scholar 

  18. Chen H, Davidson PM, Zhong Q (2014) Antimicrobial properties of nisin after glycation with lactose, maltodextrin and dextran and the thyme oil emulsions prepared thereof. Int J Food Microbiol 191:75–81. https://doi.org/10.1016/j.ijfoodmicro.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  19. Maher S, Vilk G, Kelleher F, Lajoie G, McClean S (2009) Chemical modification of the carboxyl terminal of nisin a with biotin does not abolish antimicrobial activity against the indicator organism, Kocuria rhizophila. Int J Pept Res Ther 15(3):219–226

    Article  CAS  Google Scholar 

  20. Slootweg JC, van der Wal S, Quarles van Ufford HC, Breukink E, Liskamp RM, Rijkers DT (2013) Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC. Bioconjug Chem 24(12):2058–2066. https://doi.org/10.1021/bc400401k

    Article  CAS  PubMed  Google Scholar 

  21. Jalili S, Yousefi R, Papari MM, Moosavi-Movahedi AA (2011) Effect of homocysteine thiolactone on structure and aggregation propensity of bovine pancreatic insulin. Protein J 30(5):299–307. https://doi.org/10.1007/s10930-011-9333-1

    Article  CAS  PubMed  Google Scholar 

  22. Jakubowski H (2004) Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 61(4):470–487. https://doi.org/10.1007/s00018-003-3204-7

    Article  CAS  PubMed  Google Scholar 

  23. Thamri A, Letourneau M, Djoboulian A, Chatenet D, Deziel E, Castonguay A et al (2017) Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity. PloS One 12(3):e0173783. https://doi.org/10.1371/journal.pone.0173783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  25. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22. https://doi.org/10.1038/nprot.2006.4

    Article  CAS  PubMed  Google Scholar 

  26. Waterborg JH (2009) Acetic acid—urea polyacrylamide gel electrophoresis of basic proteins. The protein protocols handbook. Springer, pp 239–249

    Google Scholar 

  27. Mayr-Harting A, Hedges A, Berkeley R (1972) Chapter VII Methods for studying bacteriocins. Methods Microbiol 7:315–422

    Article  Google Scholar 

  28. Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272(3):1935–1942

    Article  CAS  PubMed  Google Scholar 

  29. Jakubowski H (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13(15):2277–2283

    Article  CAS  PubMed  Google Scholar 

  30. Luo M (2018) Chemical and biochemical perspectives of protein lysine methylation. Chem Rev 118(14):6656–6705

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97(16):8856–8861. https://doi.org/10.1073/pnas.97.16.8856

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Haque M, Forte N, Baker JR (2021) Site-selective lysine conjugation methods and applications towards antibody–drug conjugates. Chem Commun 57(82):10689–10702

    Article  CAS  Google Scholar 

  33. Jakubowski H, Zhang L, Bardeguez A, Aviv A (2000) Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 87(1):45–51

    Article  CAS  PubMed  Google Scholar 

  34. Schiappacasse A, Maltaneri RE, Chamorro ME, Nesse AB, Wetzler DE, Vittori DC (2018) Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions. FEBS J 285(20):3801–3814. https://doi.org/10.1111/febs.14632

    Article  CAS  PubMed  Google Scholar 

  35. Genoud V, Quintana PG, Gionco S, Baldessari A, Quintana I (2018) Structural changes of fibrinogen molecule mediated by the N-homocysteinylation reaction. J Thromb Thrombolysis 45(1):66–76. https://doi.org/10.1007/s11239-017-1574-1

    Article  CAS  PubMed  Google Scholar 

  36. Stroylova YY, Zimny J, Yousefi R, Chobert JM, Jakubowski H, Muronetz VI et al (1814) (2011) Aggregation and structural changes of alpha(S1)-, beta- and kappa-caseins induced by homocysteinylation. Biochim Biophys Acta 10:1234–1245. https://doi.org/10.1016/j.bbapap.2011.05.017

    Article  CAS  Google Scholar 

  37. Plat A, Kuipers A, de Lange JG, Moll GN, Rink R (2011) Activity and export of engineered nisin-(1-22) analogs. Polymers-Basel 3(3):1282–1296. https://doi.org/10.3390/polym3031282

    Article  CAS  Google Scholar 

  38. Kuwano K, Tanaka N, Shimizu T, Nagatoshi K, Nou S, Sonomoto K (2005) Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Int J Antimicrob Ag 26(5):396–402

    Article  CAS  Google Scholar 

Download references

Funding

The Scientific Research Projects of Nigde Omer Halisdemir University funded the present study (Project No: 2014/21-BAGEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezgi Demir Özer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Rosane Freitas Schwan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir Özer, E., Yildirim, M. The modification of nisin with homocysteine thiolactone and its effect on antimicrobial activity. Braz J Microbiol 55, 191–199 (2024). https://doi.org/10.1007/s42770-023-01207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01207-8

Keywords

Navigation