Skip to main content

Advertisement

Log in

In silico prospection of Lactobacillus acidophilus strains with potential probiotic activity

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are fermentative microorganisms and perform different roles in biotechnological processes, mainly in the food and pharmaceutical industries. Among the LAB, Lactobacillus acidophilus is a species that deserves to be highlighted for being used both in prophylaxis and in the treatment of pathologies. Most of the metabolites produced by this species are linked to the inhibition of pathogens. In this study, we utilized a pangenomic and metabolic annotation analysis using Roary and BlastKOALA, ML-based probiotic activity prediction with iProbiotic and whole-genome similarity using ANI to identify strains of L. acidophilus with potential probiotic activity. According to the results in BlastKOALA and iProbiotics, L. acidophilus NCTC 13721 had the greatest potential among the 64 strains tested, both in terms of its ability to be a Lactobacillus spp. probiotic, when in the amount of genes involved in the metabolism of organic acids and quorum sensing. In addition, DSM 20079 proved to be promising for prospecting new probiotic Lactobacillus from BlastKOALA analyses, as they presented similar results in the number of genes involved in the production of lactic acid, acetic acid, hydrogen peroxide, except for quorum sensing where the NCTC 13721 strain had 14 more genes. L. acidophilus NCTC 13721 and L. acidophilus La-5 strains showed greater ability to be Lactobacillus spp. probiotic capacity, showing 84.8% and 51.9% capacity in the iProbiotics tool, respectively. When analyzed in ANI, none of the evaluated strains showed genomic similarity with NCTC 13721. In contrast, the DSM 20079 strain showed genomic similarity with all evaluated strains except NCTC 13721. Furthermore, eight strains with characteristics with approximately 100% genomic similarity to La-5 were listed: S20_1, LA-5, FSI4, APC2845, LA-G80-111, DS1_1A, LA1, and BCRC 14065. Therefore, according to the findings in iProbiotics and BlastKoala, among the 64 strains evaluated, NCTC 13721 is the most promising strain to be used for future in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. FAO/WHO. World Health Organization. Joint FAO/WHO consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Published online 2001. https://www.fao.org/3/a0512e/a0512e.pdf. Accessed 1 Nov 2022

  2. Zheng J, Wittouck S, Salvetti E et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein EJC, Tyrrell KL, Citron DM (2015) Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 60(suppl_2):S98–S107. https://doi.org/10.1093/cid/civ072

    Article  CAS  PubMed  Google Scholar 

  4. Salvetti E, Torriani S, Felis GE (2012) The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 4(4):217–226. https://doi.org/10.1007/s12602-012-9117-8

    Article  PubMed  Google Scholar 

  5. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9(1). https://doi.org/10.1038/nrmicro2473

  6. Scillato M, Spitale A, Mongelli G et al (2021) Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. MicrobiologyOpen 10(2). https://doi.org/10.1002/mbo3.1173

  7. Xiao Y, Zhao J, Zhang H, Zhai Q, Chen W (2021) Mining genome traits that determine the different gut colonization potential of Lactobacillus and Bifidobacterium species. Microb Genomics 7(6). https://doi.org/10.1099/mgen.0.000581

  8. Gao H, Li X, Chen X et al (2022) The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. J Microbiol Biotechnol 32(10):1226–1233. https://doi.org/10.4014/jmb.2205.05041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li W, Zhang Y, Li H et al (2020) Effect of soybean oligopeptide on the growth and metabolism of Lactobacillus acidophilus JCM 1132. RSC Adv 10(28):16737–16748. https://doi.org/10.1039/D0RA01632B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39(1):13–126. https://doi.org/10.1080/10408699991279187

    Article  CAS  PubMed  Google Scholar 

  11. Salman MK, Abuqwider J, Mauriello G (2023) Anti-quorum sensing activity of probiotics: the mechanism and role in food and gut health. Microorganisms 11(3):793. https://doi.org/10.3390/microorganisms11030793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8(3):425. https://doi.org/10.3390/microorganisms8030425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang X, Zhu W, Lv Z, Zou Q (2019) Molecular computing and bioinformatics. Molecules 24(13):2358. https://doi.org/10.3390/molecules24132358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang Z, Zhou X, Stanton C et al (2021) Comparative genomics and specific functional characteristics analysis of Lactobacillus acidophilus. Microorganisms 9(9):1992. https://doi.org/10.3390/microorganisms9091992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Altermann E, Russell WM, Azcarate-Peril MA et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci 102(11):3906–3912. https://doi.org/10.1073/pnas.0409188102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iartchouk O, Kozyavkin S, Karamychev V, Slesarev A (2015) Complete genome sequence of Lactobacillus acidophilus FSI4, isolated from yogurt. Genome Announc 3(2). https://doi.org/10.1128/genomeA.00166-15

  17. Chung WH, Kang J, Lim MY et al (2018) Complete genome sequence and genomic characterization of Lactobacillus acidophilus LA1 (11869BP). Front Pharmacol 9:311400. https://doi.org/10.3389/fphar.2018.00083

    Article  CAS  Google Scholar 

  18. Stahl B, Barrangou R (2013) Complete genome sequence of probiotic strain Lactobacillus acidophilus La-14. Genome Announc 1(3). https://doi.org/10.1128/genomeA.00376-13

  19. Yang X, Wang Y, Huo G (2013) Complete genome sequence of Lactococcus lactis subsp. lactis KLDS4.0325. Genome Announc 1(6). https://doi.org/10.1128/genomeA.00962-13

  20. Yu J, Du X, Wang W et al (2011) Phenotypic and genotypic characteristics of lactic acid bacteria isolated from sour congee in Inner Mongolia of China. J Gen Appl Microbiol 57(4). https://doi.org/10.2323/jgam.57.197

  21. Huang CH, Chen CC, Chiu SH et al (2020) Development of a high-resolution single-nucleotide polymorphism strain-typing assay using whole genome-based analyses for the Lactobacillus acidophilus probiotic strain. Microorganisms 8(9):1445. https://doi.org/10.3390/microorganisms8091445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palomino MM, Allievi MC, Martin JF et al (2015) Draft genome sequence of the probiotic strain Lactobacillus acidophilus ATCC 4356. Genome Announc 3(1). https://doi.org/10.1128/genomeA.01421-14

  23. (PDF) Infant gut strain persistence is associated with maternal origin, phylogeny, and functional potential including surface adhesion and iron acquisition. ResearchGate. https://doi.org/10.1101/2021.01.26.428340

  24. Gangiredla J, Barnaba TJ, Mammel MK, et al. Fifty-six draft genome sequences of 10 Lactobacillus species from 22 commercial dietary supplements. Genome Announc. Published online June 28, 2018. https://doi.org/10.1128/genomea.00621-18

  25. Sun Z, Harris HMB, McCann A et al (2015) Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6(1):1–13. https://doi.org/10.1038/ncomms9322

    Article  CAS  Google Scholar 

  26. Carpi FM, Coman MM, Silvi S, Picciolini M, Verdenelli MC, Napolioni V (2022) Comprehensive pan-genome analysis of Lactiplantibacillus plantarum complete genomes. J Appl Microbiol 132(1):592–604. https://doi.org/10.1111/jam.15199

    Article  CAS  PubMed  Google Scholar 

  27. Sitto F, Battistuzzi FU (2020) Estimating pangenomes with roary. Hall BG, ed. Mol Biol Evol 37(3):933–939. https://doi.org/10.1093/molbev/msz284

    Article  CAS  PubMed  Google Scholar 

  28. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731. https://doi.org/10.1016/j.jmb.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Fuentes S, Hernández-de la Fuente S, Morales-Ruiz V et al (2021) A novel, sequencing-free strategy for the functional characterization of Taenia solium proteomic fingerprint. Rinaldi G, ed. PLoS Negl Trop Dis 15(2):e0009104. https://doi.org/10.1371/journal.pntd.0009104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Y, Li H, Zheng L et al (2022) iProbiotics: a machine learning platform for rapid identification of probiotic properties from whole-genome primary sequences. Brief Bioinform 23(1):bbab477. https://doi.org/10.1093/bib/bbab477

    Article  CAS  PubMed  Google Scholar 

  31. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9(1):5114. https://doi.org/10.1038/s41467-018-07641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ciufo S, Kannan S, Sharma S et al (2018) Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 68(7):2386–2392. https://doi.org/10.1099/ijsem.0.002809

    Article  PubMed  PubMed Central  Google Scholar 

  33. Savijoki K, San-Martin-Galindo P, Pitkänen K et al (2022) Food-grade bacteria combat pathogens by blocking AHL-mediated quorum sensing and biofilm formation. Foods 12(1):90. https://doi.org/10.3390/foods12010090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng Z, Luo XM, Liu J, Wang H (2020) Quorum sensing, biofilm, and intestinal mucosal barrier: involvement the role of probiotic. Front Cell Infect Microbiol 10:538077. https://doi.org/10.3389/fcimb.2020.538077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwendicke F, Korte F, Dörfer CE, Kneist S, Fawzy El-Sayed K, Paris S (2017) Inhibition of Streptococcus mutans growth and biofilm formation by probiotics in vitro. Caries Res 51(2):87–95. https://doi.org/10.1159/000452960

    Article  CAS  PubMed  Google Scholar 

  36. Najarian A, Sharif S, Griffiths MW (2019) Evaluation of protective effect of Lactobacillus acidophilus La-5 on toxicity and colonization of Clostridium difficile in human epithelial cells in vitro. Anaerobe 55:142–151. https://doi.org/10.1016/j.anaerobe.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  37. Zambori C, Morvay AA, Sala C et al (2016) Antimicrobial effect of probiotics on bacterial species from dental plaque. J Infect Dev Ctries 10(3):214–221. https://doi.org/10.3855/jidc.6800

    Article  CAS  PubMed  Google Scholar 

  38. Fox MJ, Ahuja KDK, Robertson IK, Ball MJ, Eri RD (2015) Can probiotic yogurt prevent diarrhoea in children on antibiotics? A double-blind, randomised, placebo-controlled study. BMJ Open 5(1):e006474. https://doi.org/10.1136/bmjopen-2014-006474

    Article  PubMed  PubMed Central  Google Scholar 

  39. Litus O, Derkach N, Litus V, Bisyuk Y, Lytvynenko B (2019) Efficacy of probiotic therapy on atopic dermatitis in adults depends on the C-159T polymorphism of the CD14 receptor gene - a pilot study. Open Access Maced J Med Sci 7(7):1053–1058. https://doi.org/10.3889/oamjms.2019.242

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, Rocha Ribeiro SM, Duarte Martino HS (2017) Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. Clin Nutr Edinb Scotl 36(1):85–92. https://doi.org/10.1016/j.clnu.2015.11.011

    Article  CAS  Google Scholar 

  41. Tsilika M, Thoma G, Aidoni Z et al (2022) A four-probiotic preparation for ventilator-associated pneumonia in multi-trauma patients: results of a randomized clinical trial. Int J Antimicrob Agents 59(1):106471. https://doi.org/10.1016/j.ijantimicag.2021.106471

    Article  CAS  PubMed  Google Scholar 

  42. Tachedjian G, Aldunate M, Bradshaw CS, Cone RA (2017) The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol 168(9-10):782–792. https://doi.org/10.1016/j.resmic.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  43. Hernández-Aquino S, Miranda-Romero LA, Fujikawa H, Maldonado-Simán EDJ, Alarcón-Zuñiga B (2019) Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. Biocontrol Sci 24(4):185–192. https://doi.org/10.4265/bio.24.185

    Article  PubMed  Google Scholar 

  44. Stanojević-Nikolić S, Dimić G, Mojović L, Pejin J, Djukić-Vuković A, Kocić-Tanackov S (2016) Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms: antimicrobial activity of lactic acid. J Food Process Preserv 40(5):990–998. https://doi.org/10.1111/jfpp.12679

    Article  CAS  Google Scholar 

  45. Watanabe T, Nishio H, Tanigawa T et al (2009) Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol-Gastrointest Liver Physiol 297(3):G506–G513. https://doi.org/10.1152/ajpgi.90553.2008

    Article  CAS  PubMed  Google Scholar 

  46. Markowiak-Kopeć P, Śliżewska K (2020) The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4):1107. https://doi.org/10.3390/nu12041107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajab S, Tabandeh F, Shahraky MK, Alahyaribeik S (2020) The effect of lactobacillus cell size on its probiotic characteristics. Anaerobe 62:102103. https://doi.org/10.1016/j.anaerobe.2019.102103

    Article  CAS  PubMed  Google Scholar 

  48. Bull M, Plummer S, Marchesi J, Mahenthiralingam E (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 349(2):77–87. https://doi.org/10.1111/1574-6968.12293

    Article  CAS  PubMed  Google Scholar 

  49. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Fábio Pereira Leivas Leite, Daniela Peres Martinez, and Carlos James Scaini for the contribution in the manuscript revision and the Omixlab (Bioinformatics Laboratory of the Federal University of Pelotas) team for all the analysis support. We also thank CAPES and the Post-Graduate Program in Health Sciences of Federal University of Rio Grande for the scholarship granted, which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaella Sinnott Dias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Gisele Monteiro

Supplementary information

ESM 1

(XLSX 72 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, R.S., Kremer, F.S. & da Costa de Avila, L.F. In silico prospection of Lactobacillus acidophilus strains with potential probiotic activity. Braz J Microbiol 54, 2733–2743 (2023). https://doi.org/10.1007/s42770-023-01139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01139-3

Keywords

Navigation