Skip to main content

Advertisement

Log in

Prevalence of AmpC, ESBL, and colistin resistance genes in Enterobacterales isolated from ready-to-eat food in Algeria

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance among bacteria present in ready-to-eat foods is an emerging concern. Hence, this study investigated the presence of extended-spectrum and AmpC β-lactamases (ESBL/AmpC)-producing Enterobacterales (ESBL-E) and the dissemination of mcr-1 in ESBL-E from ready-to-eat food samples (RTE) in Algeria. RTE food samples (n = 204) were aseptically collected and selectively cultured using MacConkey agar. The isolates were screened for ESBL production using the DDST test, confirmed ESBL-E isolates were identified using different conventional methods and MALDI-TOF MS, antibiotic susceptibility was determined using the disc diffusion and broth microdilution assay, ESBL-E isolates were analyzed for colistin and ESBL/AmpC encoding genes by PCR, and food samples were analyzed by univariate and multiple logistic regression. Overall, 48 (17.4%) of the 276 Enterobacterales were confirmed as ESBL producers, with a high prevalence in soups (40%), salads (25%), and cream-filled pastries (23.8%). Antibiotic susceptibility testing revealed that all the ESBL-E isolates were found multi-drug resistant. PCR revealed that blaTEM, blaCTX-M, blaCMY-2, blaOXA-1, and blaSHV were the most frequently detected. blaCTX-M-9 and blaCTX-M-1 were the predominant CTX-M types. Furthermore, four isolates were positive for mcr-1; three of them harbored the colistin resistance gene and ESBL/AmpC genes (2 E. cloacae and 1 S. enterica). To the best of our knowledge, this is the first report that detects the presence of the mcr-1 gene in ESBL-E strains isolated from RTE foods in Algeria. These findings suggest an urgent need for strict policies that prevent the spread and transmission of ESBL-E in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Vincenti S, Raponi M, Sezzatini R, Giubbini G, Laurenti P (2018) Enterobacteriaceae antibiotic resistance in ready-to-eat foods collected from hospital and community canteens: analysis of prevalence. J Food Prot 81(3):424–429

    PubMed  Google Scholar 

  2. Beshiru A, Okoh AI, Igbinosa EO (2022) Processed ready-to-eat (RTE) foods sold in Yenagoa Nigeria were colonized by diarrheagenic Escherichia coli which constitute a probable hazard to human health. PLoS One 17(4):e0266059

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabedo L, Picart Barrot L, Teixidó Canelles A (2008) Prevalence of Listeria monocytogenes and Salmonella in ready-to-eat food in Catalonia, Spain. J Food Prot 71(4):855–859

    CAS  PubMed  Google Scholar 

  4. Arslan S, Eyi A (2011) Antimicrobial resistance and ESBL prevalence in Escherichia Coli from retail meats. J Food Saf 31:262–267

    CAS  Google Scholar 

  5. Karikari KB, Kpordze SW, Yamik DY, Saba CKS (2022) Ready-to-eat food as sources of extended-spectrum b-lactamase producing Salmonella and E. coli in Tamale, Ghana. Front trop Dis 3:834048

    Google Scholar 

  6. WHO (2015) https://www.who.int/news/item/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deaths. Accessed 20 Jan 2023

  7. Chantziaras I, Boyen F, Callens B, Dewulf J (2014) Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother 69(3):827–834

    CAS  PubMed  Google Scholar 

  8. Yaici L, Haenni M, Métayer V, Saras E, Mesbah Zekar F, Ayad M, Touati A, Madec JY (2017) Spread of ESBL/AmpC-producing Escherichia coli and Klebsiella pneumoniae in the community through ready-to-eat sandwiches in Algeria. Int J Food Microbiol 245:66–72

    CAS  PubMed  Google Scholar 

  9. Zaatout N, Bouras S, Slimani N (2021) Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: a systematic review and meta-analysis. J Water Health 19(5):705–723

    PubMed  Google Scholar 

  10. Zaatout N, Ayachi A, Kecha M (2020) Epidemiological investigation of subclinical bovine mastitis in Algeria and molecular characterization of biofilm-forming Staphylococcus aureus. Trop Anim Health Prod 52(1):283–292

    PubMed  Google Scholar 

  11. Geser N, Stephan R, Hächler H (2012) Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res 8:21

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang S, Huang Y, Yang G, Lei T, Chen M, Ye Q, Wang J, Gu Q, Wei X, Zhang J, Wu Q (2021) High prevalence of multidrug-resistant Escherichia coli and first detection of IncHI2/IncX4-plasmid carrying mcr-1 E. coli in retail ready-to-eat foods in China. Int J Food Microbiol 355:109349

    CAS  PubMed  Google Scholar 

  13. Jarzab A, Gorska-Fraczek S, Rybka J, Witkowaka D (2011) Enterobacteriaceae infection-diagnosis, antibitioc resistance and prevention. Postepy Hig Med Dosw 65:55–72

    Google Scholar 

  14. Bassetti M, Pecori D, Sibani M, Corcione S, Rosa FG (2015) Epidemiology and treatment of MDR Enterobacteriaceae. Curr Treat Options Infect Dis 7:291–316

    Google Scholar 

  15. Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang J (2018) Characterization of extended-spectrum b-lactamase-producing Enterobacteriaceae from retail food in China. Front Microbiol 9(4):1709

    PubMed  PubMed Central  Google Scholar 

  16. Xylia P, Botsaris G, Chrysargyris A, Skandamis P, Tzortzakis N (2019) Variation of microbial load and biochemical activity of ready-to-eat salads in Cyprus as affected by vegetable type, season, and producer. Food Microbiol 83:200–210

    CAS  PubMed  Google Scholar 

  17. Pitout JD (2012) Extraintestinal pathogenic Escherichia coli: an update on antimicrobial resistance, laboratory diagnosis and treatment. Expert Rev Anti Infect Ther 10(10):1165–1176

    CAS  PubMed  Google Scholar 

  18. Iseppi R, de Niederhäusern S, Bondi M, Messi P, Sabia C (2018) Extended-spectrum β-lactamase, AmpC, and MBL-producing Gram-negative bacteria on fresh vegetables and ready-to-eat salads sold in local markets. Microb Drug Resist 24(8):1156–1164

    CAS  PubMed  Google Scholar 

  19. Egea P, López-Cerero L, Navarro MD, Rodríguez-Baño J, Pascual A (2011) Assessment of the presence of extended-spectrum beta-lactamase-producing Escherichia coli in eggshells and ready-to-eat products. Eur J Clin Microbiol Infect Dis 30(9):1045–1047

    CAS  PubMed  Google Scholar 

  20. Lee JH, Bae IK, Lee SH (2012) New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Med Res Rev 32(1):216–232

    CAS  PubMed  Google Scholar 

  21. Zurfluh K, Nüesch-Inderbinen M, Morach M, Zihler Berner A, Hächler H, Stephan R (2015) Extended-spectrum-b-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. App. Environ Microbiol 81(9):3115–3120

    CAS  Google Scholar 

  22. Liu BT, Li X, Zhang Q, Shan H, Zou M, Song FJ (2019) Colistin-resistant mcr-positive Enterobacteriaceae in fresh vegetables, an increasing infectious threat in China. Int J Antimicrob Agents 54(1):89–94

    CAS  PubMed  Google Scholar 

  23. Yasir M, Qureshi AK, Kensarah EA, Bibi F, Al-Zahrani IA, Abd El Ghany M, Azhar EI (2021) Draft genome sequence of colistin-resistant and extended-spectrum β-lactamase (ESBL)-producing multidrug-resistant Escherichia coli isolated from poultry meat. J Glob Antimicrob Resist 27:112–114

    CAS  PubMed  Google Scholar 

  24. Aklilu E, Harun A, Singh KKB (2022) Molecular characterization of blaNDM, blaOXA-48, mcr-1 and blaTEM-52 positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Vet Res. 18(1):190

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Costa D, Vinue L, Poeta P, Coelho AC, Matos M, Saenz Y, Torres C (2009) Prevalence of extended spectrum beta-lactamase producing Escherichia coli isolates in faecal samples of broilers. Vet Microbiol 138(3-4):339–344

    CAS  PubMed  Google Scholar 

  26. EUCAST (2013) European Committee on Antimicrobial Susceptibility Testing, EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. V.1.0. http://www.amcli.it/wp-content/uploads/2015/10/EUCAST_detection_resistance_mechanisms_V1.pdf. Accessed 20 Jan 2023

  27. EUCAST (2022) European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters. V.12.0. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf. Accessed 20 Jan 2023

  28. Päivärinta M, Latvio S, Fredriksson-Ahomaa M, Heikinheimo A (2020) Whole genome sequence analysis of antimicrobial resistance genes, multilocus sequence types and plasmid sequences in ESBL/AmpC Escherichia coli isolated from broiler caecum and meat. Int J Food Microbiol 315:108361

    PubMed  Google Scholar 

  29. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65(3):490–495

    CAS  PubMed  Google Scholar 

  30. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, Guerra B, Malorny B, Borowiak M, Hammerl JA, Battisti A, Franco A, Alba P, Perrin-Guyomard A, Granier SA, De Frutos EC, Malhotra-Kumar S, Villa L, Carattoli A, Hendriksen RS (2018) Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23(6):17–00672

    PubMed  PubMed Central  Google Scholar 

  31. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hidler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    CAS  PubMed  Google Scholar 

  32. Sivakumar M, Abass G, Vivekanandhan R, Anukampa SDK, Bhilegaonkar K, Kumar S, Grace MR, Dubal Z (2021) Extended-spectrum beta-lactamase (ESBL) producing and multidrug-resistant Escherichia coli in street foods: a public health concern. J Food Sci Technol 58(4):1247–1261

    CAS  PubMed  Google Scholar 

  33. Junaid K, Ejaz H, Asim I, Younas S, Yasmeen H, Abdalla AE, Abosalif KOA, Alameen AAM, Ahmad N, Bukhari SNA, Rehman A (2021) Heavy metal tolerance trend in extended-spectrum β-lactamase encoding strains recovered from food samples. Int J Environ Res Public Health 18(9):4718

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nüesch-Inderbinen M, Zurfluh K, Peterhans S, Hächler H, Stephan R (2015) Assessment of the prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in ready-to-eat salads, fresh-cut fruit, and sprouts from the Swiss market. J Food Prot 78(6):1178–1181

    PubMed  Google Scholar 

  35. Sharifzadeh A, Hajsharifi-Shahreza M, Ghasemi-Dehkordi P (2016) Evaluation of microbial contamination and chemical qualities of cream-filled pastries in confectioneries of Chaharmahal Va Bakhtiari Province (Southwestern Iran). Osong Public Health Res Perspect 7(6):346–350

    PubMed  PubMed Central  Google Scholar 

  36. Dorado-Garcıa A, Smid J, van Pelt W, Bonten M, Fluit A, Van den Bunt G, Wagenaar J, Hordijk J, Dierikx C, Veldman K (2018) Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J Antimicrob. Chemother 73(2):339–347

    PubMed  Google Scholar 

  37. Freitag C, Michael GB, Li J, Kadlec K, Wang Y, Hassel M, Schwarz S (2018) Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Vet Microbiol 219:63–69

    CAS  PubMed  Google Scholar 

  38. Maina J, Ndung'u P, Muigai A, Kiiru J (2021) Antimicrobial resistance profiles and genetic basis of resistance among non-fastidious Gram-negative bacteria recovered from ready-to-eat foods in Kibera informal housing in Nairobi, Kenya. Access Microbiol 3(6):000236

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Annavajhala MK, Gomez-Simmonds A, Uhlemann AC (2019) Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol 31:44

    Google Scholar 

  40. Tekiner İH, Özpınar H (2016) Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz J Microbiol 47(2):444–451

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Giri S, Kudva V, Shetty K, Shetty V (2021) Prevalence and characterization of extended-spectrum β-Lactamase-producing antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in ready-to-eat street foods. Antibiotics (Basel) 10(7):850

    PubMed  Google Scholar 

  42. Schrijver R, Stijntjes M, Rodríguez-Baño J, Tacconelli E, Babu Rajendran N, Voss A (2018) Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clin Microbiol Infect 24:577–590

    CAS  PubMed  Google Scholar 

  43. Pruden A, Larsson DG, Amézquita A, Collignon P, Brandt KK (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885

    PubMed  PubMed Central  Google Scholar 

  44. Durso LM, Cook KL (2014) Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr Opin Microbiol 19:37–44

    PubMed  Google Scholar 

  45. Händel N, Schuurmans JM, Brul S, ter Kuile BH (2013) Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob Agents Chemother 57(8):3752–3762

    PubMed  PubMed Central  Google Scholar 

  46. Pérez-Rodríguez F, Mercanoglu TB (2091) A State-of-Art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies. Front Microbiol 6:10

    Google Scholar 

  47. Jahantigh M, Samadi K, Dizaji RE, Salari S (2020) Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BMC Vet Res 16(1):267

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvão JA, Franco BDGM, Lincopan N, Landgraf M (2017) Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob Agents Chemother 61(5):e02718–e02716

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vitas AI, Naik D, Pérez-Etayo L, González D (2018) Increased exposure to extended-spectrum β-lactamase-producing multidrug-resistant Enterobacteriaceae through the consumption of chicken and sushi products. Int J Food Microbiol 269:80–86

    CAS  PubMed  Google Scholar 

  50. Irrgang A, Roschanski N, Tenhagen BA, Grobbel M, Skladnikiewicz-Ziemer T, Thomas K, Roesler U, Käsbohrer A (2016) Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PLoS One 11(7):e0159863

    PubMed  PubMed Central  Google Scholar 

  51. Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K (2013) Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56(7):1030–1037

    PubMed  Google Scholar 

  52. Kaesbohrer A, Bakran-Lebl K, Irrgang A, Fischer J, Kämpf P, Schiffmann A, Werckenthin C, Busch M, Kreienbrock L, Hille K (2019) Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Vet Microbiol 233:52–60

    CAS  PubMed  Google Scholar 

  53. Aslanta SÖ (2020) High occurrence of CMY-2-type beta-lactamase-producing Escherichia coli among broiler flocks in Turkey. Trop Anim Health Prod 52(4):1681–1689

    Google Scholar 

  54. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stewardson AJ, Renzi G, Maury N, Vaudaux C, Brossier C, Fritsch E, Pittet D, Heck M, van der Zwaluw K, Reuland EA, van de Laar T, Snelders E, Vandenbroucke-Grauls C, Kluytmans J, Edder P, Schrenzel J, Harbarth S (2014) Extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital food: a risk assessment. Infect Control Hosp Epidemiol 35(4):375–383

    PubMed  Google Scholar 

  56. Richter L, Du Plessis EM, Duvenage S, Korsten L (2019) Occurrence, identification, and antimicrobial resistance profiles of extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae from fresh vegetables retailed in Gauteng Province, South Africa. Foodborne Pathog Dis 16(6):421–427

    CAS  PubMed  Google Scholar 

  57. Mikhayel M, Leclercq SO, Sarkis DK, Doublet B (2021) Occurrence of the colistin resistance gene mcr-1 and additional antibiotic resistance genes in ESBL/AmpC-producing Escherichia coli from poultry in Lebanon: a nationwide survey. Microbiol Spectr 9(2):e0002521

    PubMed  Google Scholar 

  58. Uyanik T, Gülel GT, Alişarli M (2021) Characterization of extended-spectrum beta-lactamase-producing Enterobacterales from organic and conventional chicken meats. Lett Appl Microbiol 72(6):783–790

    CAS  PubMed  Google Scholar 

  59. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH (2012) Extended-spectrum betalactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18(7):646–655

    CAS  PubMed  Google Scholar 

  60. Kurittu P, Khakipoor B, Aarnio M, Nykäsenoja S, Brouwer M, Myllyniemi AL, Vatunen E, Heikinheimo A (2021) Plasmid-borne and chromosomal ESBL/AmpC genes in Escherichia coli and Klebsiella pneumoniae in global food products. Front Microbiol 12:592291

    PubMed  PubMed Central  Google Scholar 

  61. Kim HS, Chon JW, Kim YJ, Kim DH, Kim MS, Seo KH (2015) Prevalence and characterization of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in ready-to-eat vegetables. Int J Food Microbiol 207:83–86

    CAS  PubMed  Google Scholar 

  62. Chishimba K, Hang'ombe BM, Muzandu K, Mshana SE, Matee MI, Nakajima C, Suzuki Y (2016) Detection of extended-spectrum beta-lactamase-producing Escherichia coli in market-ready chickens in Zambia. Int J Microbiol 2016:5275724

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rhouma M, Letellier A (2017) Extended-spectrum β-lactamases, carbapenemases and the mcr-1 gene: is there a historical link? Int J Antimicrob Agents 49(3):269–271

    CAS  PubMed  Google Scholar 

  64. Colodner R (2005) Extended-spectrum beta-lactamases: a challenge for clinical microbiologists and infection control specialists. Am J Infect Control 33(2):104–107

    PubMed  Google Scholar 

  65. Ramadan AA, Abdelaziz NA, Amin MA, Aziz RK (2019) Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci Rep 9(1):4224

    PubMed  PubMed Central  Google Scholar 

  66. Long L, You L, Wang D, Wang M, Wang J, Bai G, Li J, Wei X, Li S (2022) Highly prevalent MDR, frequently carrying virulence genes and antimicrobial resistance genes in Salmonella enterica serovar 4,[5],12: i:- isolates from Guizhou Province, China. PLoS One 17(5):e0266443

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study did not receive any funding. However, AIA received salaries from an Academy of Finland-funded project (WASTPAN-grant number 1339417).

Author information

Authors and Affiliations

Authors

Contributions

ZN and AIA conducted laboratory analysis of samples, ZN wrote the manuscript, BA and OR edited the paper, and AH revised the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nawel Zaatout.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ilana Camargo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaatout, N., Al-Mustapha, A.I., Bouaziz, A. et al. Prevalence of AmpC, ESBL, and colistin resistance genes in Enterobacterales isolated from ready-to-eat food in Algeria. Braz J Microbiol 54, 2205–2218 (2023). https://doi.org/10.1007/s42770-023-01082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01082-3

Keywords

Navigation