Skip to main content
Log in

Characterization of plant growth-promoting, antifungal, and enzymatic properties of beneficial bacterial strains associated with pulses rhizosphere from Bundelkhand region of India

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present study was conducted to characterize the native plant growth-promoting rhizobacteria (PGPRs) from the pulse rhizosphere of the Bundelkhand region of India. Twenty-four bacterial isolates belonging to nineteen species (B. amyloliquefaciens, B. subtilis, B. tequilensis, B. safensis, B. haynesii, E. soli, E. cloacae, A. calcoaceticus, B. valezensis, S. macrescens, P. aeruginosa, P. fluorescens, P. guariconensis, B. megaterium, C. lapagei, P. putida, K. aerogenes, B. cereus, and B. altitudinis) were categorized and evaluated for their plant growth-promoting potential, antifungal properties, and enzymatic activities to identify the most potential strain for commercialization and wider application in pulse crops. Phylogenetic identification was done on the basis of 16 s rRNA analysis. Among the 24 isolates, 12 bacterial strains were gram positive, and 12 were gram negative. Among the tested 24 isolates, IIPRAJCP-6 (Bacillus amyloliquefaciens), IIPRDSCP-1 (Bacillus subtilis), IIPRDSCP-10 (Bacillus tequilensis), IIPRRLUCP-5 (Bacillus safensis), IIPRCDCP-2 (Bacillus subtilis), IIPRAMCP-1 (Bacillus safensis), IIPRMKCP-10 (Bacillus haynesii), IIPRANPP-3 (Bacillus amyloliquefaciens), IIPRKAPP-5 (Enterobacter soli), IIPRAJCP-2 (Enterobacter cloacae), IIPRDSCP-11 (Acinetobacter calcoaceticus), IIPRDSCP-9 (Bacillus valezensis), IIPRMKCP-3 (Seratia macrescens), IIPRMKCP-1 (Pseudomonas aeruginosa), IIPRCKPP-3 (Pseudomonas fluorescens), IIPRMKCP-9 (Pseudomonas guariconensis), IIPRMKCP-8 (Bacillus megatirium), IIPRMWCP-9 (Cedecea lapagei), IIPRKUCP-10 (Pseudomonas putida), IIPRAMCP-4 (Klebsiella aerogenes), IIPRCKPP-7 (Enterobacter cloacae), IIPRAMCP-5 (Bacillus cereus), IIPRSHEP-6 (Bacillus subtilis), IIPRRSBa89 (Bacillus altitudinis) bacterial isolates, IIPRMKCP-9, IIPRAJCP-6, IIPRMKCP-10, IIPRAMCP-5, IIPRSHEP-6, and IIPRMKCP-3 showed the maximum antagonistic activity against Fusarium oxysporum f. sp. ciceris (FOC), Fusarium oxysporum f. sp. lentis (FOL), and Fusarium udum (FU) causing wilt disease of chickpea, lentil, and pigeonpea, respectively, and maximum plant growth-promoting enzyme (phosphatase), plant growth hormone (IAA), and siderophore production show promising results under greenhouse conditions. This study is the first report of bacterial diversity in the pulse-growing region of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sah U, Dixit GP, Kumar H, Ojha J, Katiyar M, Singh V, Dubey SK, Singh NP (2021) Dynamics of pulse scenario in Bundelkhand region of Uttar Pradesh: a temporal analysis. Indian J Extension Education 57:97–103

    Article  Google Scholar 

  2. Sharma MK, Sisodia BVS (2018) Pulses area out of reach-a regional study of Uttar Pradesh. Int J Agric Sci 10:5335–5342

    Google Scholar 

  3. Kumar R, Singh SK, Sah U (2017) Multidimensional study of pulse production in Bundelkhand region of India. Legum Res 40:2046–2052. https://doi.org/10.18805/LR-3502

    Article  Google Scholar 

  4. Pandey NK, Dikshit A, Tewari D, Yadav NK, Somvanshi SPS (2019) Pulses production in Lalitpur district of Bundelkhand region: constraints and opportunities. Indian J Extension Education 55:35–39

    Google Scholar 

  5. Wani SP, Rockstrom J, Oweis T (2009) Rainfed agriculture: unlocking the potential. Wallingford, UK: CABI; Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Colombo, Sri Lanka: International Water Management Institute (IWMI), p 310

  6. Anonymous (2013) FAQ Press economics and statistics, ministry of agriculture government of India, New Delhi 34–38

  7. Desai S, Prasad RD, Kumar GP (2019) Fusarium wilts of chickpea, pigeon pea and lentil and their management. In: Singh, D, Prabha R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore

  8. Vandana UM, Chopra A, Choudhury A, Adapa D, Mazumder PB (2018) Genetic diversity and antagonistic activity of plant growth promoting bacteria, isolated from tea-rhizosphere: a culture dependent study. Biomedical Res 29:853–864. https://goo.gl/52qUST

  9. Muleta D, Assefa F, Granhall U (2007) In vitro antagonism of rhizobacteria isolated from Coffea Arabica L. against emerging fungal coffee pathogens. Eng Life Sci 7:1–11

    Article  Google Scholar 

  10. Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and dieases. In: Siddiqui Z.A., editor. PGPR: Biocontrol and Biofertilization. Springer; Dordrecht, The Netherlands. 257–296

  11. Zhao L, Xu Y, Lai X-H, Shan C, Deng Z, JiY, (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46(4):977–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359(1446):907–18. https://doi.org/10.1098/rstb.2003.1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gowhar HD, Suhaib A, Bandh AN, Kamili RN, Rouf AB (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir Valley. India Ecol Balkanica 5(31):35

    Google Scholar 

  14. Aparna, Y. and Sarada, J (2012) Molecular characterization and phylogenetic analysis of serratia sp-YAJS an extracellular dnase producer isolated from rhizosphere soil. 53:78-84

  15. Wahyudi AT, Astuti RI, Giyanto (2011) Screening of Pseudomonas sp isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am J Agric Biol Sci (In press)

  16. Avishai BD, Charles E, Davidson (2014) Estimation method for serial dilution experiments. J Microbiol Methods 107:214–221

  17. Lane DJ (1991)16S/23SrRNA sequencing in nucleic acid technique in bacterial systematics, eds E. Stackebrandt and M. Good fellow (New york, NY: John Wiley and Sons) 115–175

  18. Bellemain E, Carlsen T, Brochmann C (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

  19. Maniatis T, Fritsch EF, Sambrook JK (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

  20. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402. https://doi.org/10.1093/nar/25.17.3389

  21. Umana R (1968) Reevaluation of the method of Kunitz for the assay of proteolytic activities in liver and brain homogenate Anal. Biochem 26(3):430–438

    CAS  Google Scholar 

  22. Reissig JL, Strominger JL, Leloir LF (1955) A modification colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 27:959–966

    Article  Google Scholar 

  23. Miller GL (1959) Modified DNS method for reducing sugars. Anal Chem 31:426–428

  24. García CA, De Rossi BP, Alcaraz E, Vay C, Franco M (2012) Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev Argent Microbiol 44:150–154

  25. Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual. Benjamin/Cummings, New York, NY, USA

  26. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

  27. Kovacs N (1956) Identification of Pseudomonas pyocyanae by oxidase reaction. Nature 178:703. https://doi.org/10.1038/178703a0

  28. Sharma A, Dev K, Sourirajan A (2021). Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. J Genet Eng Biotechnol 19

  29. Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha India. Iran J Microbiol 5(2):159–65

  30. Morton DJ, Stroube WH (1955) Antagonistic and stimulating effects of soil micro-organism of Sclerotium. Phytopathol 45:417–420

  31. White PJ, Ward H, Cassel JA (2005) Vicious and virtuous circles in the dynamics of infectious disease and the provision of healthcare: gonorrhea in Britain as an example. J Infect Dis 192:824–836

  32. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537

    Article  CAS  PubMed  Google Scholar 

  34. Nielse TH, Sorensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

    Article  Google Scholar 

  35. Goodfellow M, Sutcliffe I (2014) Chun J (2014) New approaches to prokaryotic systematics. Academic Press, Ne York

    Google Scholar 

  36. Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618. https://doi.org/10.1007/s11738-008-0173-3

    Article  CAS  Google Scholar 

  37. Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121. https://doi.org/10.1139/m97-015

    Article  CAS  Google Scholar 

  38. Kumar H, Arora NK, Kumar V, Maheshwari DK (1999) Isolation, characterization and selection of salt-tolerant rhizobia nodulating Acacia catechu and Acacia nilotica. Symbiosis 26:279–288

    Google Scholar 

  39. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P et al (2001) Responses of agronomically important crops to inoculation with emph type”2Azospirillum</emph>. Funct Plant Biol 28:871–879. https://doi.org/10.1071/PP01074

    Article  Google Scholar 

  40. Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. https://doi.org/10.1139/w04-035

    Article  CAS  PubMed  Google Scholar 

  41. Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM et al (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721. https://doi.org/10.1016/j.soilbio.2008.06.016

    Article  CAS  Google Scholar 

  42. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yasin NA, Khan WU, Ahmad SR, Ali A, Ahmad A, Akram W (2018) Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res 25:4491–4505. https://doi.org/10.1007/s11356-017-0761-0

    Article  CAS  Google Scholar 

  44. Jatan R, Chauhan PS, Lata C (2019) Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics 111:509–519. https://doi.org/10.1016/j.ygeno.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  45. Rath CC (1999) Heat stable lipase activity of thermotolerant bacteria from hot springs at Orissa. India Cytobios 99:105–111

    CAS  PubMed  Google Scholar 

  46. Du Toit LJ (2004) Management of diseases in seed crops. In: Goodman R (ed) Encyclopedia of plant and crop science (pp 675–677)

  47. Hanane B, Abdelilah M, Jane R, Said M, Cherkaoui El M (2022) The effects of mycorrhizal fungi on vascular wilt diseases. Crop Protection 155

  48. Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. Elsevier, Amsterdam

  49. Mishra RK, Rathore US, Pandey S, Mishra M, Sharma N, Kumar S, Tripathi KBM (2022) Plant–rhizospheric microbe interactions: enhancing plant growth and improving soil biota. In: Singh UB, Rai JP, Sharma AK (eds) Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. Rhizosphere Biology. Springer, Singapore

  50. Mishra RK, Monika Mishr, Sonika Pandey, Naimuddin (2020) Bacillus altitudidnis: new biocontrol against for phytopthora stem blight and dry root rot disease of pigeonpea. ICAR-Pulses News letter 31:2

  51. Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K (2021) Effects of abiotic stress on soil microbiome. Int J Mol Sci 22(16):9036. https://doi.org/10.3390/ijms22169036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Department of Science and Technology, India, for financial assistance and Director, ICAR-IIPR, Kanpur, for his encouragement and constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Admir Giachini

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Pandey, S., Rathore, U.S. et al. Characterization of plant growth-promoting, antifungal, and enzymatic properties of beneficial bacterial strains associated with pulses rhizosphere from Bundelkhand region of India. Braz J Microbiol 54, 2349–2360 (2023). https://doi.org/10.1007/s42770-023-01051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01051-w

Keywords

Navigation