Skip to main content
Log in

Extraction, characterization, and biological activities of exopolysaccharides from plant root soil fungus Fusarium merismoides A6

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The exploration of polysaccharides from microorganisms is of great importance. In this study, a new type of exopolysaccharide excreted by Fusarium merismoides A6 (FM-EPS) was isolated, and the extraction conditions were optimized using a response surface methodology (RSM). The extraction temperature at 0 °C, a precipitation time of 7.83 h, and an ethanol precipitation concentration of 77.64% were predicted and proved to be the best extraction conditions with the maximum extraction yield of 0.74 g/mL. Then, two fractions of F. merismoides A6 exopolysaccharides (FM-EPS1 and FM-EPS2) were obtained through DEAE Sepharose fast flow column chromatography. As indicated by monosaccharide composition analysis, both fractions mainly consisted of mannose, glucose, galactose, and ribose, with an average molecular weight of 5.14 × 104 and 6.50 × 104 g/mol, respectively. FT-IR and NMR spectroscopy indicated the FM-EPSs had both α- and β-glycosidic bonds. Moreover, the determination of antioxidant and antiproliferative activities in vitro proved that FM-EPSs had good antioxidant activities and antiproliferation activities. FM-EPS1 showed stronger antioxidant activities than FM-EPS2. FM-EPS2 showed antiproliferation activities on HeLa and HepG2 cells, while FM-EPS1 had no obvious antiproliferative activity. Therefore, FM-EPSs could be explored as potential antioxidant and anticancer agent applied in food, feed, nutraceutical, pharmaceutical, cosmetics, and chemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16(1):41–46

    Article  CAS  PubMed  Google Scholar 

  2. Chaisuwan W, Jantanasakulwong K, Wangtueai S, Phimolsiripol Y, Chaiyaso T, Techapun C, Phongthai S, You S, Regenstein JM, Seesuriyachan P (2020) Microbial exopolysaccharides for immune enhancement: fermentation, modifications and bioactivities. Food Biosci 35:100564

    Article  CAS  Google Scholar 

  3. Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3:200

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2017) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124

    Article  CAS  PubMed  Google Scholar 

  5. Guarro J, Nucci M, Akiti T, Gene J, Barreiro MD, Goncalves RT (2000) Fungemia due to Fusarium sacchari in an immunosuppressed patient. J Clin Microbiol 38(1):419–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stepien L (2020) Fusarium: mycotoxins, taxonomy, pathogenicity. Microorganisms 8(9):1404

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cortinovis C, Pizzo F, Spicer LJ, Caloni F (2013) Fusarium mycotoxins: effects on reproductive function in domestic animals-a review. Theriogenology 80(6):557–564

    Article  CAS  PubMed  Google Scholar 

  8. Rampersad SN (2020) Pathogenomics and management of Fusarium diseases in plants. Pathogens 9(5):340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohyd Polym 90(1):683–689

    Article  CAS  Google Scholar 

  10. Mahapatra S, Banerjee D (2013) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53:62–66

    Article  CAS  PubMed  Google Scholar 

  11. Zeng YJ, Yang HR, Wu XL, Peng F, Huang Z, Pu L, Zong MH, Yang JG, Lou WY (2019) Structure and immunomodulatory activity of polysaccharides from Fusarium solani DO7 by solid-state fermentation. Int J Biol Macromol 137:568–575

    Article  CAS  PubMed  Google Scholar 

  12. Zeng YJ, Yang HR, Wang HF, Zong MH, Lou WY (2019) Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7. J Funct Foods 53:266–275

    Article  CAS  Google Scholar 

  13. Zeng YJ, Yang HR, Zong MH, Yang JG, Lou WY (2019) Novel antibacterial polysaccharides produced by endophyte Fusarium solani DO7. Bioresour Technol 288:121596

    Article  CAS  PubMed  Google Scholar 

  14. Caicedo NH, Davalos AF, Puente PA, Rodriguez AY, Caicedo PA (2019) Antioxidant activity of exo-metabolites produced by Fusarium oxysporum: an endophytic fungus isolated from leaves of Otoba gracilipes. MicrobiologyOpen 8:e903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li P, Luo C, Sun W, Lu S, Mou Y, Zhou L (2011) In vitro antioxidant activities of polysaccharides from endophytic fungus Fusarium oxysporum Dzf17. Afr J Microbiol Res 5(32):5990–5993

    CAS  Google Scholar 

  16. Chen YL, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X, Guo TT, Guo T (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol (NY) 17(2):219–228

    Article  CAS  PubMed  Google Scholar 

  17. Xu Z, Chen G, Xue L, Zhang H, Wang J, Xiang H, Li J, Zheng K (2019) Isolation, structural characterizations and bioactivities of exopolysaccharides produced by Bacillus licheniformis. Int J Biol Macromol 141:298–306

    Article  CAS  PubMed  Google Scholar 

  18. Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23–2. Carbohyd Polym 78(1):117–124

    Article  CAS  Google Scholar 

  19. Wang J, Zhang Q, Zhang Z, Li Z (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42(2):127–132

    Article  PubMed  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(s1-2):248–254

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Mao W, Zhang X, Qi X, Chen Y, Chen Y, Xu J, Zhao C, Hou Y, Yang Y (2011) Structural characterization of an anticoagulant-active sulfated polysaccharide isolated from green alga Monostroma latissimum. Carbohyd Polym 85(2):394–400

    Article  CAS  Google Scholar 

  23. Braca A, De-Tommasi N, Di-Bari L, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from Bauhinia tarapotensis. J Nat Prod 64(7):892–895

    Article  CAS  PubMed  Google Scholar 

  24. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060

    Article  CAS  Google Scholar 

  25. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  26. Dorman HJD, Hiltunen R (2004) Fe(III) reductive and free radical-scavenging properties of summer savory ( Satureja hortensis L.) extract and subfractions. Food Chem 88(2):193–199

    Article  CAS  Google Scholar 

  27. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  CAS  PubMed  Google Scholar 

  28. Crous PW, Lombard L, Sandoval-Denis M, Seifert KA, Schroers HJ, Chaverri P, Gene J, Guarro J, Hirooka Y, Bensch K et al (2021) Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 98:100116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerlach W, Nirenberg H (1982) The genus Fusarium-a pictorial atlas. Mitt Biol Bundesanst Land Forstwirtsch Berlin Dahlem 209:1–406

    Google Scholar 

  30. Booth BC (1971) The genus Fusarium. Commonwealth Mycological Institute Kew, Surrey, England

    Google Scholar 

  31. Pujari V, Chandra TS (2000) Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochem 36(1):31–37

    Article  CAS  Google Scholar 

  32. Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wires-Comput. Stat 2(2):128–149

    Google Scholar 

  33. Prathyusha A, Mohana Sheela G, Bramhachari PV (2018) Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnol Rep (Amst) 19:e00277

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Yang L, Sun Y, Mou Q, Bo W, Ying Z, Huang L (2014) Structural characterization of LbGp1 from the fruits of Lycium barbarum L. Food Chem 159:137–142

    Article  CAS  PubMed  Google Scholar 

  35. Qiao D, Hu B, Gan D, Sun Y, Ye H, Zeng X (2009) Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii.Carbohyd Polym 76(3):422–429

    Article  CAS  Google Scholar 

  36. Chen C, You LJ, Abbasi AM, Fu X, Liu RH, Li C (2016) Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food Funct 7(1):530–539

    Article  CAS  PubMed  Google Scholar 

  37. Shingel KI (2002) Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res 337(16):1445–1451

    Article  CAS  PubMed  Google Scholar 

  38. Song X, Liu Z, Zhang J, Yang Q, Ren Z, Zhang C, Liu M, Gao Z, Zhao H, Jia L (2018) Anti-inflammatory and hepatoprotective effects of exopolysaccharides isolated from Pleurotus geesteranus on alcohol-induced liver injury. Sci Rep 8(1):10493

    Article  PubMed  PubMed Central  Google Scholar 

  39. Corsaro MM, De Castro C, Naldi T, Parrilli M, Tomas JM, Regue M (2005) 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145. Carbohyd Res 340(13):2212–2217

    Article  CAS  Google Scholar 

  40. Foti MC (2015) Use and abuse of the DPPH* radical. J Agric Food Chem 63(40):8765–8776

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Xiong F, Liu Y, Liu F, Hao Z, Chen H (2018) Total fractionation and characterization of the water-soluble polysaccharides isolated from Enteromorpha intestinalis. Int J Biol Macromol 111:319–325

    Article  CAS  PubMed  Google Scholar 

  42. Rollet-Labelle E, Grange M-J, Elbim C, Marquetty C, Gougerot-Pocidalo M-A, Pasquier C (1998) Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radical Bio Med 24(4):563–572

    Article  CAS  Google Scholar 

  43. Liu F, Ng TB (2000) Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci 66(8):725–735

    Article  CAS  PubMed  Google Scholar 

  44. Fan L, Li J, Deng K, Ai L (2012) Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohyd Polym 87(2):1849–1854

    Article  CAS  Google Scholar 

  45. Jiang C, Wang M, Liu J, Gan D, Zeng X (2011) Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohyd polym 84(3):851–857

    Article  CAS  Google Scholar 

  46. Wu Q, Qu H, Jia J, Cong K, Yan W, Yan H, Gui Z (2015) Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato. Carbohyd Polym 132:31–40

    Article  CAS  Google Scholar 

  47. Datta HK, Das D, Koschella A, Das T, Heinze T, Biswas S, Chaudhuri S (2019) Structural elucidation of a heteropolysaccharide from the wild mushroom Marasmiellus palmivorus and its immune-assisted anticancer activity. Carbohyd Polym 211:272–280

    Article  CAS  Google Scholar 

  48. Zhang P, Sun F, Cheng X, Li X, Mu H, Wang S, Geng H, Duan J (2019) Preparation and biological activities of an extracellular polysaccharide from Rhodopseudomonas palustris. Int J Biol Macromol 131:933–940

    Article  CAS  PubMed  Google Scholar 

  49. Li C, Li XS, You LJ, Fu X, Liu RH (2017) Fractionation, preliminary structural characterization and bioactivities of polysaccharides from Sargassum pallidum. Carbohyd Polym 155:261–270

    Article  CAS  Google Scholar 

  50. Meng X, Che C, Zhang J, Gong Z, Si M, Yang G, Cao L, Liu J (2019) Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. Int J Biol Macromol 129:608–614

Download references

Funding

We greatly appreciate the financial support from Shandong Provincial Science Fund for Distinguished Young Scholars (No. ZR2020JQ11), Young Taishan Scholars (grant number TSQN201909159), and the Natural Science Foundation of Shandong Province (No. ZR2019BC060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zheng, Lijun Wu or Xiao Men.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xu, Z., Wang, F. et al. Extraction, characterization, and biological activities of exopolysaccharides from plant root soil fungus Fusarium merismoides A6. Braz J Microbiol 54, 199–211 (2023). https://doi.org/10.1007/s42770-022-00842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00842-x

Keywords

Navigation