Skip to main content

Advertisement

Log in

Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This work aimed to characterize the antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61, isolated from traditional fermented green olive, involved in their activity against fungi and bacteria responsible for food spoilage and poisonings. Their application as a biopreservative agent was also investigated. The culture of L. plantarum S61 showed substantial antifungal and antibacterial activity against yeasts (Rhodotorula glutinis and Candida pelliculosa), molds (Penicillium digitatum, Aspergillus niger, Fusarium oxysporum, and Rhizopus oryzae), and pathogenic bacteria (Listeria monocytogenes ATCC 19,117, Salmonella enterica subsp. enterica ATCC 14,028, Staphylococcus aureus subsp. aureus ATCC 6538, Pseudomonas aeruginosa ATCC 49,189), with inhibition zones > 10 mm. Likewise, the cell-free supernatant (CFS) of L. plantarum S61 showed an essential inhibitory effect against fungi and bacteria, with inhibition diameters of 12.25–22.05 mm and 16.95–17.25 mm, respectively. The CFS inhibited molds’ biomass and mycelium growth, with inhibition ranges of 63.18–83.64% and 22.57–38.93%, respectively. The antifungal activity of the CFS was stable during 4 weeks of storage at 25 °C, while it gradually decreased during storage at 4 °C. Several antimicrobial compounds were evidenced in the CFS of L. plantarum S61, including organic acids, ethanol, hydrogen peroxide, diacetyl, proteins, and fatty acids. The protein fraction, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), demonstrated important antifungal activity, in relation to the fraction with molecular weight between 2 and 6 kDa. L. plantarum S61 and its CFS, tested in apple and orange fruit biopreservation, demonstrated their protective effect against P. digitatum spoilage. The CFS exhibited effectiveness in reducing Salmonella enterica subsp. enterica ATCC 14,028 in apple juice. L. plantarum S61 and/or its bioactive compounds CFS represent a promising strategy for biocontrol against pathogens and spoilage microorganisms in the agro-industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. FAO (2019) The state of food and agriculture: moving forward on food loss and waste reduction. http://www.fao.org/3/ca6030en/ca6030en.pdf. Accessed 20 March 2020

  2. Pandey, A. and P.S. Negi (2018) Use of natural preservatives for shelf life extension of fruit juices. In: (ed) Fruit Juices Academic Press, pp 571–605

  3. Moss MO (2008) Fungi, quality and safety issues in fresh fruits and vegetables. J Appl Microbiol 104:1239–1243. https://doi.org/10.1111/j.1365-2672.2007.03705.x

    Article  CAS  PubMed  Google Scholar 

  4. Salomão BdCM (2018) Pathogens and spoilage microorganisms in fruit juice. In: (ed) Fruit Juices, Academic Press, pp 291–308

  5. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78. https://doi.org/10.1016/j.tifs.2004.02.014

    Article  CAS  Google Scholar 

  6. Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E (2017) Antifungal microbial agents for food biopreservation-a review. Microorganisms 5. https://doi.org/10.3390/microorganisms5030037

  7. Tropcheva R, Nikolova D, Evstatieva Y, Danova S (2014) Antifungal activity and identification of Lactobacilli, isolated from traditional dairy product “katak.” Anaerobe 28:78–84. https://doi.org/10.1016/j.anaerobe.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W (2019) Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review. Compr Rev Food Sci Food Saf 18:1403–1436. https://doi.org/10.1111/1541-4337.12481

    Article  PubMed  Google Scholar 

  9. EFSA (2020) The 2019 updated list of QPS status recommended biological agents in support of EFSA risk assessments. EFSA J 18:5966

    Google Scholar 

  10. Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control 21:370–380. https://doi.org/10.1016/j.foodcont.2009.07.011

    Article  CAS  Google Scholar 

  11. Magnusson J, Schnurer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67:1–5. https://doi.org/10.1128/AEM.67.1.1-5.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niku-Paavola M-L, Laitila A, Mattila-Sandholm T, Haikara A (1999) New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol. 86:29–35

    Article  CAS  Google Scholar 

  13. Siedler S, Balti R, Neves AR (2019) Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol 56:138–146. https://doi.org/10.1016/j.copbio.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  14. Sjogren J, Magnusson J, Broberg A, Schnurer J, Kenne L (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 69:7554–7557. https://doi.org/10.1128/aem.69.12.7554-7557.2003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Strom K, Sjogren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  CAS  Google Scholar 

  16. Trias R, Baneras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236. https://doi.org/10.2436/20.1501.01.66

    Article  CAS  PubMed  Google Scholar 

  17. Mora-Villalobos JA, Montero-Zamora J, Barboza N, Rojas-Garbanzo C, Usaga J, Redondo-Solano M, Schroedter L, Olszewska-Widdrat A, López-Gómez JP (2020) Multi-product lactic acid bacteria fermentations: a review. Fermentation 6:23. https://doi.org/10.3390/fermentation6010023

    Article  CAS  Google Scholar 

  18. Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D (2016) Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol 7:464. https://doi.org/10.3389/fmicb.2016.00464

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, Salah RB, Chihib NE, Saalaoui E, Asehraou A (2020) Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob Proteins 12:683–696. https://doi.org/10.1007/s12602-019-09543-8

    Article  CAS  PubMed  Google Scholar 

  20. Abouloifa H, Gaamouche S, Rokni Y, Hasnaoui I, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, D’Hallewin G, Ben Salah R, Saalaoui E, Asehraou A (2021) Antifungal activity of probiotic Lactobacillus strains isolated from natural fermented green olives and their application as food bio-preservative. Biol Control 152:104450. https://doi.org/10.1016/j.biocontrol.2020.104450

    Article  CAS  Google Scholar 

  21. Zheng J, Wittouck S, Salvetti E, Franz C, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Ganzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  22. Cavicchioli VQ, Camargo AC, Todorov SD, Nero LA (2017) Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from Brazilian artisanal cheese. J Dairy Sci 100:2526–2535. https://doi.org/10.3168/jds.2016-12049

    Article  CAS  PubMed  Google Scholar 

  23. Gharbi Y, Fhoula I, Ruas-Madiedo P, Afef N, Boudabous A, Gueimonde M, Ouzari H-I (2018) In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Ann Microbiol 69:61–72. https://doi.org/10.1007/s13213-018-1396-1

    Article  CAS  Google Scholar 

  24. Muhialdin BJ, Hassan Z (2011) Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. Am J Appl Sci 8:447–451. https://doi.org/10.3844/ajassp.2011.447.451

    Article  CAS  Google Scholar 

  25. Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G (2017) Lactobacillus plantarum with broad antifungal activity: a promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol 247:48–54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  26. A.O.A.C. (2000) Official Methods of Analysis. The Association of Official Analytical Chemists, Gaithersburg, MD, USA. 17th Edition

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  28. Circle SJ, Stone L, Boruff C (1945) Acrolein determination by means of tryptophane. A colorimetric micromethod. Ind Eng Chem Anal Ed 17:259–262. https://doi.org/10.1021/i560140a021

    Article  CAS  Google Scholar 

  29. Crowley S, Mahony J, van Sinderen D (2013) Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiol 58:291–299. https://doi.org/10.1007/s12223-012-0209-3

    Article  CAS  Google Scholar 

  30. Wang H, Sun Y, Chen C, Sun Z, Zhou Y, Shen F, Zhang H, Dai Y (2013) Genome shuffling of Lactobacillus plantarum for improving antifungal activity. Food Control 32:341–347. https://doi.org/10.1016/j.foodcont.2012.12.020

    Article  CAS  Google Scholar 

  31. Nayyeri N, Edalatian Dovom MR, Habibi Najafi MB, Bahreini M (2017) A preliminary study on antifungal activity of lactic acid bacteria isolated from different production stages of Lighvan cheese on Penicillium expansum and Rhodotorula mucilaginosa. J Food Meas Charact 11:1734–1744. https://doi.org/10.1007/s11694-017-9554-x

    Article  Google Scholar 

  32. Nallala V, Sadishkumar V, Jeevaratnam K (2017) Molecular characterization of antimicrobial Lactobacillus isolates and evaluation of their probiotic characteristics in vitro for use in poultry. Food Biotechnol 31:20–41. https://doi.org/10.1080/08905436.2016.1269289

    Article  CAS  Google Scholar 

  33. Stanojević-Nikolić S, Dimić G, Mojović L, Pejin J, Djukić-Vuković A, Kocić-Tanackov S (2016) Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J Food Process Preserv 40:990–998. https://doi.org/10.1111/jfpp.12679

    Article  CAS  Google Scholar 

  34. Hof H (2019) Rhodotorula spp. in the gut - foe or friend? GMS Infect Dis 7:Doc02. https://doi.org/10.3205/id000042

  35. Lin HC, Lin HY, Su BH, Ho MW, Ho CM, Lee CY, Lin MH, Hsieh HY, Lin HC, Li TC, Hwang KP, Lu JJ (2013) Reporting an outbreak of Candida pelliculosa fungemia in a neonatal intensive care unit. J Microbiol Immunol Infect 46:456–462. https://doi.org/10.1016/j.jmii.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  36. Deepthi BV, Poornachandra Rao K, Chennapa G, Naik MK, Chandrashekara KT, Sreenivasa MY (2016) Antifungal attributes of Lactobacillus plantarum mys6 against fumonisin producing Fusarium proliferatum associated with poultry feeds. PLoS ONE 11:e0155122. https://doi.org/10.1371/journal.pone.0155122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerez CL, Torino MI, Rollán G, Font de Valdez G (2009) Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20:144–148. https://doi.org/10.1016/j.foodcont.2008.03.005

    Article  CAS  Google Scholar 

  38. Le Lay C, Coton E, Le Blay G, Chobert JM, Haertle T, Choiset Y, Van Long NN, Meslet-Cladiere L, Mounier J (2016) Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int J Food Microbiol 239:79–85. https://doi.org/10.1016/j.ijfoodmicro.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  39. Salomskiene J, Jonkuviene D, Macioniene I, Abraitiene A, Zeime J, Repeckiene J, Vaiciulyte-Funk L (2019) Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. Eur Food Res Technol 245:569–579. https://doi.org/10.1007/s00217-018-03227-3

    Article  CAS  Google Scholar 

  40. Muhialdin BJ, Hassan Z, Saari N (2018) In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Ann Microbiol 68:557–567. https://doi.org/10.1007/s13213-018-1363-x

    Article  CAS  Google Scholar 

  41. Liu S, Ruan W, Li J, Xu H, Wang J, Gao Y, Wang J (2008) Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 166:93–102. https://doi.org/10.1007/s11046-008-9124-1

    Article  CAS  PubMed  Google Scholar 

  42. Koba K, Yanagita T (2014) Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract 8:e525–e532. https://doi.org/10.1016/j.orcp.2013.10.001

    Article  PubMed  Google Scholar 

  43. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. https://doi.org/10.1093/jac/dkl024

    Article  CAS  PubMed  Google Scholar 

  44. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401. https://doi.org/10.3390/ijms17030401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep 11:27–35. https://doi.org/10.1016/j.btre.2016.05.001

    Article  Google Scholar 

  46. Sharma D, Saharan BS, Shailly K (2016) Biosurfactants of lactic acid bacteria. Springer Switzerland

  47. Degner BM, Chung C, Schlegel V, Hutkins R, McClements DJ (2014) Factors influencing the freeze-thaw stability of emulsion-based foods. Compr Rev Food Sci Food Saf 13:98–113. https://doi.org/10.1111/1541-4337.12050

    Article  CAS  PubMed  Google Scholar 

  48. Rouse S, Harnett D, Vaughan A, van Sinderen D (2008) Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 104:915–923. https://doi.org/10.1111/j.1365-2672.2007.03619.x

    Article  CAS  PubMed  Google Scholar 

  49. Barbosa AAT, Mantovani HC, Jain S (2017) Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 37:852–864. https://doi.org/10.1080/07388551.2016.1262323

    Article  CAS  PubMed  Google Scholar 

  50. Walker M, Phillips CA (2008) The effect of preservatives on Alicyclobacillus acidoterrestris and Propionibacterium cyclohexanicum in fruit juice. Food Control 19:974–981. https://doi.org/10.1016/j.foodcont.2007.10.003

    Article  CAS  Google Scholar 

  51. Hatab S, Yue T, Mohamad O (2012) Removal of patulin from apple juice using inactivated lactic acid bacteria. J Appl Microbiol 112:892–899. https://doi.org/10.1111/j.1365-2672.2012.05279.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The CNRST (PPR/19/2015), CNRST (Morocco)/CNRi (Italy) cooperation and McGill University provided financial support.

Author information

Authors and Affiliations

Authors

Contributions

HA and AA selected the study design. HA, IH, YR, RB, and SG conducted the experiments. HA and AA wrote the manuscript. SK, MB, GD, RBS, ES, NG, and AA performed review and editing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Houssam Abouloifa.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouloifa, H., Rokni, Y., Hasnaoui, I. et al. Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent. Braz J Microbiol 53, 1501–1513 (2022). https://doi.org/10.1007/s42770-022-00791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00791-5

Keywords

Navigation