Skip to main content

Advertisement

Log in

PK/PD modeling of daptomycin against MRSA and MRSE and Monte Carlo simulation for bacteremia treatment

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to investigate the effect of daptomycin against methicillin-resistant staphylococci (MRSA and MRSE) bacteremia using computer modeling.

Methods

A pharmacokinetic/pharmacodynamic (PK/PD) modeling strategy to explain the data from an in vitro dynamic model employing time-kill curves for MRSA and MRSE was proposed. Bacterial killing was followed over time by determining viable counts and the resulting time-kill data was analyzed. Monte Carlo simulations were performed using pharmacokinetic parameters and pharmacodynamic data to determine the probabilities of target attainment and cumulative fractions of response in terms of area under the concentration curve/minimum inhibition concentration (MIC) targets of daptomycin. Simulations were conducted to assess the reduction in the number of colony-forming units (CFU)/mL for 18 days of treatment with daptomycin at doses of 6, 8, and 10 mg/kg/24 h or 48 h with variations in creatinine clearance (CLCR): 15–29 mL/min/1.73 m2, 30–49 mL/min/1.73 m2, 50–100 mL/min/1.73 m2, as well as for defining the probability of reaching the target fAUC/MIC = 80 in the same dose and clearance range. A PK/PD model with saturation in the number of bacteria in vitro, growth delay, and bacterial death, as well as Hill’s factor, was used to describe the data for both MRSA and MRSE.

Results

Monte Carlo simulations showed that for MRSA there was a reduction > 2 log CFU/mL with doses ≥ 6 mg/kg/day in 75th percentile of the simulated population after 18 days of treatment with daptomycin, whereas for MRSE this reduction was observed in 95th percentile of the population.

Conclusions

The presented in vitro PK/PD model and associated modeling approach were able to characterize the time-kill kinetics of MRSA and MRSE. Our study based on PTAs suggests that doses ≥ 6 mg/kg/day of daptomycin should be used to treat bacteremia caused by MRSA and MRSE in patients with CLCR of 15–29 mL/min/1.73 m2. For patients with CLCR ≥ 50 mL/min/1.73 m2, it would be necessary to employ a dose of 10 mg/kg/day to treat complicated bacteremias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ayau P, Bardossy AC, Sanchez G, Ortiz R, Moreno D, Hartman P et al (2017) Risk factors for 30-day mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infections. Int J Infect Dis 61:3–6

    Article  Google Scholar 

  2. Cheung GYC, Otto M (2010) Understanding the significance of Staphylococcus epidermidis bacteremia in babies and children. Curr Opin Infect Dis 23:208–216

    Article  Google Scholar 

  3. Martínez-Meléndez A, Morfín-Otero R, Villarreal-Treviño L, González-González G, Llaca-Díaz J, Rodrígues-Noriega E et al (2015) Staphylococcal cassette chromosome mec (SCC mec) in coagulase negative staphylococci. Medicina Universitária 17:229–233

    Article  Google Scholar 

  4. Paterson DL (2006) Clinical experience with recently approved antibiotics. Curr Opin Pharmacol 6:486–490

    Article  CAS  Google Scholar 

  5. García-de-la-Mària C, Marco F, Armero Y, Soy D, Moreno A, Del Río A et al (2010) Daptomycin is effective for treatment of experimental endocarditis due to methicillin-resistant and glycopeptide – intermediate Staphylococcus epidermidis. Antimicrob Agents Chemother 54:2781–2786

    Article  Google Scholar 

  6. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  CAS  Google Scholar 

  7. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665

    Article  CAS  Google Scholar 

  8. Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ (2012) Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case- control study. Clin Infect Dis 54:51–58

    Article  CAS  Google Scholar 

  9. Murray KP, Zhao JJ, Davis SL, Kullar R, Kaye KS, Lephart P et al (2013) Early use of daptomycin versus vancomycin for methicillin resistant Staphylococcus aureus bacteremia with vancomycin MIC 1 mg/L: a matched cohort study. Clin Infect Dis 56:1562–1569

    Article  CAS  Google Scholar 

  10. Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL (2016) Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol 16:216–227

    Article  Google Scholar 

  11. Mueller M, Peña A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob Agents Chemother 48(2):369–377

    Article  CAS  Google Scholar 

  12. Cristinacce A, Wright JG, Macpherson M, Iaconis J, Das S (2021) Comparing probability of target attainment against Staphylococcus aureus for ceftaroline fosamil, vancomycin, daptomycin, linezolid, and ceftriaxone in complicated skin and soft tissue infection using pharmacokinetic/pharmacodynamic models. Diagn Microbiol Infect Dis 99 (4): 115292

  13. Safdar N, Andes D, Craig WA (2004) In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 48:63–68

    Article  CAS  Google Scholar 

  14. Alder J, Li T, Yu D, Morton L, Silverman J, Zhang XX et al (2003) Analysis of daptomycin efficacy and breakpoint standards in a murine model of Enterococcus faecalis and Enterococcus faecium renal infection. Antimicrob Agents Chemother 47:3561–3566

    Article  CAS  Google Scholar 

  15. Bradley JS, Dudley MN, Drusano GL (2003) Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation. Pediatr Infect Dis J 22:982–992

    Article  Google Scholar 

  16. Czock D, Markert C, Hartman B, Keller F (2009) Pharmacokinetics and pharmacodynamics of antimicrobial drugs. Expert Opinion Drug Metabob Toxicol 5:475–487

    Article  CAS  Google Scholar 

  17. Liu Q, Rand K, Derendorf H (2004) Impact of tazobactam pharmacokinetics on the antimicrobial effect of piperacillin-tazobactam combinations. Int J Antimicrob Agents 23:494–497

    Article  CAS  Google Scholar 

  18. Grégoire N, Marchand S, Ferrandière M, Lasocki S, Seguin P et al (2019) Population pharmacokinetics of daptomycin in critically ill patients with various degrees of renal impairment. J Antimicrob Chemother 74:117–125

    PubMed  Google Scholar 

  19. EUCAST Steering Committee (2006) EUCAST technical note on daptomycin. Clin Microbiol Infect 12:599–601

    Article  Google Scholar 

  20. Louie A, Kaw P, Liu W, Jumbe N, Miller MH, Drusano GL (2001) Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 45:845–851

    Article  CAS  Google Scholar 

  21. Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing: twenty fourth informational supplement, vol. M100- S24. CLSI, Wayne, PA.

  22. Di Paolo A, Tascini C, Polillo M, Gemignani G, Nielsen EI, Bocci G et al (2013) Population pharmacokinetics of daptomycin in patients affected by severe Gram-positive infections. Intern J Antimicrob Agents 42:250–255

    Article  Google Scholar 

  23. Benvenuto M, Benziger DP, Yankelev S, Vigliani G (2006) Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50:3245–3249

    Article  CAS  Google Scholar 

  24. EUCAST. 2021. Available at: http// www.eucast.org/clinical_breakpoint (last accessed 19 may 2021).

  25. Wu G, Abraham T, Rapp J, Vastey F, Saad N, Balmir E (2011) Daptomycin: evaluation of a high-dose treatment strategy. Intern J Antimicrob Agents 38:192–196

    Article  CAS  Google Scholar 

  26. Duah M (2010) Daptomycin for methicillin-resistant Staphylococcus epidermidis native-valve endocarditis: a case report. Ann Clin Microbiol Antimicrob 9:1–4

    Article  Google Scholar 

  27. Kullar R, Davis SL, Kaye KS, Levine DP, Pogue JM, Rybak MJ (2013) Implementation of an antimicrobial stewardship pathway with daptomycin for optimal treatment of methicillin-resistant Staphylococcus aureus bacteremia. Pharmacotherapy 33:3–10

    Article  CAS  Google Scholar 

  28. Gawronski KM (2015) Successful use of daptomycin in a preterm neonate with persistent methicillin-resistant Staphylococcus epidermidis bacteremia. J Pediatr Pharmacol Ther 20:61–65

    PubMed  PubMed Central  Google Scholar 

  29. Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 65:1053–1090

    Article  Google Scholar 

  30. Salem AH, Zhanel GG, Ibrahim SA, Noreddin AM (2014) Monte Carlo simulation analysis of ceftobiprole, dalbavancin, daptomycin, tigecycline, linezolid and vancomycin pharmacodynamics against intensive care unit-isolated methicillin-resistant Staphylococcus aureus. Clin Exp Pharmacol Physiol 41:437–443

    Article  CAS  Google Scholar 

  31. Moise PA, Amodio-Groton M, Rashid M, Lamp KC, Hoffman-Roberts HL, Yoon MJ et al (2013) Multicenter evaluation of the clinical outcomes of daptomycin with and without concomitant-lactams in patients with Staphylococcus aureus bacteremia and mild to moderate renal impairment. Antimicrob Agents Chemother 57:1192–1200

    Article  CAS  Google Scholar 

  32. Cojutti PG, Candoni A, Ramos-Martin V, Lazzarotto D, Zannier ME, Fanin R et al (2017) Population pharmacokinetics and dosing considerations for the use of daptomycin in adult patients with haematological malignancies. J Antimicrob Chemother 72:2342–2350

    Article  CAS  Google Scholar 

  33. Bhavnani SM, Ambrose PG, Hammel JP, Rubino CM, Drusano GL (2015) Evaluation of daptomycin exposure and efficacy and safety endpoints to support risk-versus-benefit considerations. Antimicrob Agents Chemother 60:1600–1607

    Article  Google Scholar 

  34. Seaton RA, Menichetti F, Dalekos G, Beiras-Fernandez A, Nacinovich F, Pathan R et al (2015) Evaluation of effectiveness and safety of high-dose daptomycin: results from patients included in the European Cubicin® outcomes registry and experience. Adv Ther 32:1192–1205

    Article  CAS  Google Scholar 

  35. Yabuno K, Seki M, Miyawaki K, Miwa Y, Tomono K (2013) High-dose, short-interval daptomycin regimen was safe and well tolerated in three patients with chronic renal failure. Clin Pharmacol 5:161–166

    PubMed  PubMed Central  Google Scholar 

  36. Budha NR, Lee RB, Hurdle JG, Lee RE, Meibohm B (2009) A simple in vitro PK/PD model system to determine time-kill curves of drugs against Mycobacteria. Tuberculosis (Edinb) 89:378–385

    Article  CAS  Google Scholar 

  37. Asín-Prieto E, Rodríguez-Gascón A, Isla A (2015) Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 21(5):319–329

    Article  Google Scholar 

  38. Trang M, Dudley MN, Bhavnani SM (2017) Use of Monte Carlo simulation and considerations for PK–PD targets to support antibacterial dose selection. Curr Opin Pharmacol 36:107–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the content development of the manuscript, reviewed all drafts, and approved the final version.

Corresponding author

Correspondence to Leandro Tasso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Jorge Luiz Mello Sampaio

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, B., Alves, I., Staudt, K. et al. PK/PD modeling of daptomycin against MRSA and MRSE and Monte Carlo simulation for bacteremia treatment. Braz J Microbiol 52, 1967–1979 (2021). https://doi.org/10.1007/s42770-021-00582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00582-4

Keywords

Navigation