Skip to main content
Log in

Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lignocellulosic hydrolysates will also contain compounds that inhibit microbial metabolism, such as organic acids, furaldehydes, and phenolic compounds. Understanding the response of yeasts toward such inhibitors is important to the development of different bioprocesses. In this work, the growth capacity of 7 industrial Saccharomyces cerevisiae and 7 non-Saccharomyces yeasts was compared in the presence of 3 different concentrations of furaldehydes (furfural and 5-hydroxymetil-furfural), organic acids (acetic and formic acids), and phenolic compounds (vanillin, syringaldehyde, ferulic, and coumaric acids). Then, Candida tropicalis JA2, Meyerozyma caribbica JA9, Wickerhamomyces anomalus 740, S. cerevisiae JP1, B1.1, and G06 were selected for fermentation in presence of acetic acid, HMF, and vanillin because they proved to be most tolerant to the tested compounds, while Spathaspora sp. JA1 because its xylose consumption rate. The results obtained showed a dose-dependent response of the yeasts toward the eight different inhibitors. Among the compared yeasts, S. cerevisiae strains presented higher tolerance than non-Saccharomyces, 3 of them with the highest tolerance among all. Regarding the non-Saccharomyces yeasts, C. tropicalis JA2 and W. anomalus 740 appeared as the most tolerant, whereas Spathaspora strains appeared very sensitive to the different compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  2. Caspeta L, Castillo T, Nielsen J (2015) Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 3:1–15. https://doi.org/10.3389/fbioe.2015.00184

    Article  Google Scholar 

  3. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Mini-review Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349. https://doi.org/10.1002/jctb.1676

    Article  CAS  Google Scholar 

  4. Xu F, Sun RC, Sun JX, Liu CF, He BH, Fan JS (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217. https://doi.org/10.1016/j.aca.2005.07.037

    Article  CAS  Google Scholar 

  5. Sene L, Arruda PV, Oliveira SMM, Felipe MGA (2011) Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian J Microbiol 42:1141–1146. https://doi.org/10.1590/S1517-83822011000300036

    Article  CAS  Google Scholar 

  6. Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218. https://doi.org/10.1016/j.biotechadv.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  7. Pampulha ME, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550. https://doi.org/10.1007/BF00270792

    Article  CAS  Google Scholar 

  8. Li YC, Gou ZX, Zhang Y, Xia ZY, Tang YQ, Kida K (2017) Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation. Brazilian J Microbiol 48:791–800. https://doi.org/10.1016/j.bjm.2016.11.011

    Article  CAS  Google Scholar 

  9. Malav MK, Sushil Kumar Kharia SP, SK KRS, Kannojiya S (2017) Furfural and 5-HMF: Potent fermentation inhibitors and their removal techniques. Int J Curr Microbiol Appl Sci 6:2060–2066. https://doi.org/10.20546/ijcmas.2017.603.235

    Article  CAS  Google Scholar 

  10. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638. https://doi.org/10.1007/s00253-009-1875-1

    Article  CAS  PubMed  Google Scholar 

  11. Liu ZLL (2018) Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 102:5369–5390. https://doi.org/10.1007/s00253-018-8993-6

    Article  CAS  PubMed  Google Scholar 

  12. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Kim DH, Hong YA, Park HD (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30:1633–1638. https://doi.org/10.1007/s10529-008-9726-1

    Article  CAS  PubMed  Google Scholar 

  14. Duarte LC, Carvalheiro F, Neves I, Girio FM (2005) Effects of aliphatic acids , furfural , and phenolic compounds on Debaryomyces hansenii CCMI 941. Appl Biochem Biotechnol 121–124:413–425

    Article  Google Scholar 

  15. Adeboye PT, Bettiga M, Aldaeus F, Larsson PT, Olsson L (2015) Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb Cell Fact 14:1–14. https://doi.org/10.1186/s12934-015-0338-x

    Article  CAS  Google Scholar 

  16. Bergmann JC, Trichez D, Morais Junior WG de, Ramos TGS, Pacheco TF, Carneiro CVGC, Almeida JRM (2019) Biotechnological application of non-conventional yeasts for xylose valorization. In: Sibirny A (ed) Nonconventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_2

  17. Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Reports 10:52–61. https://doi.org/10.1016/j.bbrep.2017.03.003

    Article  Google Scholar 

  18. Kurtzman CP, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2–14. https://doi.org/10.1007/s10267-009-0011-5

    Article  CAS  Google Scholar 

  19. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, LaButti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci U S A 108:13212–13217. https://doi.org/10.1073/pnas.1103039108

    Article  PubMed  PubMed Central  Google Scholar 

  20. Veras HCT, Parachin NS, Almeida JRM (2017) Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb Cell Fact 16:1–8. https://doi.org/10.1186/s12934-017-0766-x

    Article  CAS  Google Scholar 

  21. Nguyen NH, Suh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp.nov. and Candida jeffriesii sp.nov. Mycol Res 110:1232–1241. https://doi.org/10.1016/j.mycres.2006.07.002

    Article  PubMed  Google Scholar 

  22. Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FáCO, Lachance MA, Rosa CA (2009) Spathaspora arborariae sp.nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–1342. https://doi.org/10.1111/j.1567-1364.2009.00582.x

  23. Sehnem NT, Hickert LR, da Cunha-Pereira F, de Morais MA Jr, Ayub MAZ (2017) Bioconversion of soybean and rice hull hydrolysates into ethanol and xylitol by furaldehyde-tolerant strains of Saccharomyces cerevisiae, Wickerhamomyces anomalus, and their cofermentations. Biomass Convers Biorefinery 7:199–206. https://doi.org/10.1007/s13399-016-0224-8

    Article  CAS  Google Scholar 

  24. Sukpipat W, Komeda H, Prasertsan P, Asano Y (2017) Purification and characterization of xylitol dehydrogenase with L-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. J Biosci Bioeng 123:20–27. https://doi.org/10.1016/j.jbiosc.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  25. Carneiro CVGC, E Silva FC d P, Almeida JRM (2019) Xylitol production: identification and comparison of new producing yeasts. Microorganisms 7:1–15. https://doi.org/10.3390/microorganisms7110484

    Article  CAS  Google Scholar 

  26. Morais Junior WG, Pacheco TF, Trichez D, Almeida JRM, Gonçalves SB (2019) Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast 36:349–361. https://doi.org/10.1002/yea.3394

    Article  CAS  PubMed  Google Scholar 

  27. Trichez D, Steindorff AS, Soares CEVF, Formighieri EF, Almeida JRM (2019) Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp.JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. FEMS Yeast Res 19:1–15. https://doi.org/10.1093/femsyr/foz034

    Article  CAS  Google Scholar 

  28. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331. https://doi.org/10.1016/0141-0229(95)00157-3

    Article  CAS  Google Scholar 

  29. Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA (2019) Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnol Biofuels 12:1–23. https://doi.org/10.1186/s13068-019-1379-x

    Article  CAS  Google Scholar 

  30. Modig T, Almeida JRM, Gorwa-Grauslund MF, Lidén G (2008) Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 100:423–429. https://doi.org/10.1002/bit.21789

    Article  CAS  PubMed  Google Scholar 

  31. Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299. https://doi.org/10.1002/biot.201000301

    Article  CAS  PubMed  Google Scholar 

  32. Cortez DV, Roberto IC (2010) Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii. Bioresour Technol 101:1858–1865. https://doi.org/10.1016/j.biortech.2009.09.072

    Article  CAS  PubMed  Google Scholar 

  33. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121:0451–0460. https://doi.org/10.1385/abab:121:1-3:0451

    Article  Google Scholar 

  34. Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund MF (2009) Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol 100:3674–3677. https://doi.org/10.1016/j.biortech.2009.02.057

    Article  CAS  PubMed  Google Scholar 

  35. Hector RE, Mertens JA, Bowman MJ, Nichols NN, Cotta MA, Hughes SR (2011) Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast 28:645–660. https://doi.org/10.1002/yea.1893

    Article  CAS  PubMed  Google Scholar 

  36. Basso LC, De Amorim HV, De Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x

    Article  CAS  PubMed  Google Scholar 

  37. Reis VCB, Nicola AM, De Souza Oliveira Neto O et al (2012) Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J Ind Microbiol Biotechnol 39:1673–1683. https://doi.org/10.1007/s10295-012-1170-5

    Article  CAS  PubMed  Google Scholar 

  38. Bergmann JC, Trichez D, Sallet LP, Silva FCP, Almeida JRM (2018) Technological advancements in 1G ethanol production and recovery of by-products based on the biorefinery concept. In: Chandel AK, Silveira MHL (eds) Advances in sugarcane biorefinery technologies, commercialization, policy issues and paradigm shift for bioethanol and by-products. 1st ed. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-804534-3.00004-5

  39. Shen Y, Li H, Wang X, Zhang X, Hou J, Wang L, Gao N, Bao X (2014) High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol 41:1637–1645. https://doi.org/10.1007/s10295-014-1515-3

    Article  CAS  PubMed  Google Scholar 

  40. Mota TR, de Souza WR, Oliveira DM et al (2021) Suppression of a BAHD acyltransferase decreases p-coumaroyl on arabinoxylan and improves biomass digestibility in the model grass Setaria viridis. Plant J. 105:136–150. https://doi.org/10.1111/tpj.15046

    Article  CAS  PubMed  Google Scholar 

  41. Su YK, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng 112:457–469. https://doi.org/10.1002/bit.25445

    Article  CAS  PubMed  Google Scholar 

  42. Su YK, Willis LB, Rehmann L, Smith DR, Jeffries TW (2018) Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Res 18:1–14. https://doi.org/10.1093/femsyr/foy011

    Article  CAS  Google Scholar 

  43. Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM (2017) Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnol Biofuels 10:1–19. https://doi.org/10.1186/s13068-017-0899-5

    Article  CAS  Google Scholar 

  44. González-Ramos D, Gorter De Vries AR, Grijseels SS et al (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9:1–18. https://doi.org/10.1186/s13068-016-0583-1

    Article  CAS  Google Scholar 

  45. Da Silva Filho EA, De Melo HF, Antunes DF et al (2005) Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 32:481–486. https://doi.org/10.1007/s10295-005-0027-6

    Article  CAS  PubMed  Google Scholar 

  46. Soares LB, Bonan CIDG, Biazi LE, Dionísio SR, Bonatelli ML, Andrade ALD, Renzano EC, Costa AC, Ienczak JL (2020) Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass and Bioenergy 137:105549. https://doi.org/10.1016/j.biombioe.2020.105549

    Article  CAS  Google Scholar 

  47. Cadete RM, De Las Heras AM, Sandström AG et al (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9:1–14. https://doi.org/10.1186/s13068-016-0570-6

    Article  CAS  Google Scholar 

  48. Ra CH, Jeong GT, Shin MK, Kim SK (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425. https://doi.org/10.1016/j.biortech.2013.04.122

    Article  CAS  PubMed  Google Scholar 

  49. Taherzadeh M, Gustafsson L, Niklasson C et al (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708. https://doi.org/10.1007/s002530000328

    Article  CAS  PubMed  Google Scholar 

  50. Nandal P, Sharma S, Arora A (2020) Bioprospecting non-conventional yeasts for ethanol production from rice straw hydrolysate and their inhibitor tolerance. Renewable Energy 147(1):1694–1703. https://doi.org/10.1016/j.renene.2019.09.067

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable

Funding

This work was supported by EMBRAPA and the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Carlos E. V. F. Soares and Jessica C. Bergamann. The first draft of the manuscript was written by Carlos Soares and João R. M. Almeida and all authors commented on the previous of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to João Ricardo Moreira de Almeida.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Julio Santos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, C.E.V.F., Bergmann, J.C. & de Almeida, J.R.M. Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Braz J Microbiol 52, 575–586 (2021). https://doi.org/10.1007/s42770-021-00489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00489-0

Keywords

Navigation