Skip to main content
Log in

Extraction and detection of guanosine 5′-diphosphate-3′-diphosphate in amino acid starvation cells of Clavibacter michiganensis

  • Fungal and Bacterial Physiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Guanosine 5′-diphosphate-3′-diphosphate (ppGpp) is a small molecule nucleotide alarmone that can accumulate under the amino acid starvation state and trigger the stringent response. This study reported the extraction of ppGpp from the Gram-positive bacteria Clavibacter michiganensis through methods using formic acid, lysozyme, or methanol. Following extraction, ppGpp was detected through ultra-high-performance liquid chromatography (UHPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methanol method showed the highest extraction efficiency for ppGpp among the three methods tested. C. michiganensis cells in exponential growth phase was induced in amino acid starvation by serine hydroxamate (SHX) and used for ppGpp extraction and detection. When using the methanol extraction method, the results showed that ppGpp concentrations in SHX-treated samples were 15.645 nM, 17.656 nM, 20.372 nM, and 19.280 nM at 0 min, 15 min, 30 min and 1 h, respectively, when detected using LC-MS/MS. This is the first report on ppGpp extraction and detection in Clavibacter providing a new idea and approach for nucleotide detection and extraction in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data is without undue reservation. The data and material can be available from the authors.

References

  1. Cashel M, Gallant J (1969) Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221:838–841

    Article  CAS  Google Scholar 

  2. Lu WJ, Wang JW, Xu J (2012) Alarmone ppGpp and its role in the environmental adaptations of microorganisms. Chin Bull Life Sci 24(4):385–389. https://doi.org/10.1016/j.mib.2015.01.012

    Article  CAS  Google Scholar 

  3. Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. https://doi.org/10.1146/annurev.micro.62.081307.162903

    Article  CAS  PubMed  Google Scholar 

  4. Gupta KR, Baloni P, Indi SS, Chatterji D (2016) Regulation of growth, cell shape, cell division and gene expression by second messengers (p)ppGpp and cyclic di-GMP in Mycobacterium smegmatis. J Bacteriol 198:1414–1422. https://doi.org/10.1128/JB.00126-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hallez R, Delaby M, Sanselicio S, Viollier PH (2017) Hit the right spots: cell cycle control by phosphorylated guanosines in Alphaproteobacteria. Nat Rev Microbiol 15(3):137–148. https://doi.org/10.1038/nrmicro.2016.183

    Article  CAS  PubMed  Google Scholar 

  6. Liu K, Bittner AN, Wang JD (2015) Diversity in (p)ppGpp metabolism and effectors. Curr Opin Microbiol 24:72–79. https://doi.org/10.1016/j.mib.2015.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13(5):236–242. https://doi.org/10.1016/j.tim.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  8. Ross W, Vrentas Catherine E, Sanchez-Vazquez P, Gaal T, Gourse Richard L (2013) The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50(3):420–429. https://doi.org/10.1016/j.molcel.2013.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srivatsan A, Wang JD (2008) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11(2):100–105. https://doi.org/10.1016/j.mib.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  10. Atkinson GC, Tenson T, Hauryliuk V (2011) The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6(8):e23479. https://doi.org/10.1371/journal.pone.0023479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990

    Article  CAS  Google Scholar 

  12. Hamel E, Cashel M (1973) Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5′-triphosphate, 3′-diphosphate. Proc Natl Acad Sci U S A 70:3250–3254. https://doi.org/10.1073/pnas.70.11.3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13(5):298–309. https://doi.org/10.1038/nrmicro3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M (2013) Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res 41(12):6175–6189. https://doi.org/10.1093/nar/gkt302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nanamiya H, Kasai K, Nozawa A, Yun C-S, Narisawa T, Murakami K, Natori Y, Kawamura F, Tozawa Y (2007) Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol Microbiol 67(2):291–304. https://doi.org/10.1111/j.1365-2958.2007.06018.x

    Article  CAS  PubMed  Google Scholar 

  16. Ochi K (1986) Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J Gen Microbiol 132:2621–2631. https://doi.org/10.1099/00221287-132-9-2621

    Article  CAS  PubMed  Google Scholar 

  17. Ochi K, Kandala JC, Freese E (1981) Initiation of Bacillus subtilis sporulation by the stringent response to partial amino acid deprivation. J Biol Chem 256:6866–6875

    Article  CAS  Google Scholar 

  18. Washio K, Lim SP, Roongsawang N, Morikawa M (2010) Identification and characterization of the genes responsible for the production of the cyclic lipopeptide arthrofactin by Pseudomonas sp. MIS38. Biosci Biotechnol Biochem 74(5):992–999. https://doi.org/10.1271/bbb.90860

    Article  CAS  PubMed  Google Scholar 

  19. Lagosky PA, Chang FN (1978) The extraction of guanosine 5′-diphosphate, 3′-diphosphate (ppGpp) from Escherichia coli using low pH reagents: a reevaluation. Biochem Biophys Res Commun 84:1016–1024. https://doi.org/10.1016/0006-291x(78)91685-6

    Article  CAS  PubMed  Google Scholar 

  20. Chatnaparat T, Li Z, Korban SS, Zhao Y (2015) The stringent response mediated by (p)ppGpp is required for virulence of Pseudomonas syringae pv. tomato and its survival on tomato. Mol Plant-Microbe Interact 28(7):776–789. https://doi.org/10.1094/MPMI-11-14-0378-R

    Article  CAS  PubMed  Google Scholar 

  21. Chatnaparat T, Li Z, Korban SS, Zhao Y (2015) The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ Microbiol 17(11):4253–4270. https://doi.org/10.1111/1462-2920.12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fischer M, Zimmerman TP, Short SA (1982) A rapid method for the determination of guanosine 5′-diphosphate-3′-diphosphate and guanosine 5′-triphosphate-3′-diphosphate by high-performance liquid chromatography. Anal Biochem 121:135–139. https://doi.org/10.1016/0003-2697(82)90566-8

    Article  CAS  PubMed  Google Scholar 

  23. Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T (2008) The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68(5):1128–1148. https://doi.org/10.1111/j.1365-2958.2008.06229.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD (2012) Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48(2):231–241. https://doi.org/10.1016/j.molcel.2012.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang SR, Lin GM, Chen WL, Wang L, Zhang CC (2013) ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 195(19):4536–4544. https://doi.org/10.1128/JB.00724-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eichenlaub R, Gartemann KH (2011) The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Annu Rev Phytopathol 49:445–464. https://doi.org/10.1146/annurev-phyto-072910-095258

    Article  CAS  PubMed  Google Scholar 

  27. Pinto D, Santos MA, Chambel L (2013) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41(1):61–76. https://doi.org/10.3109/1040841X.2013.794127

    Article  PubMed  Google Scholar 

  28. Jiang N, Lv QY, Xu X, Cao YS, Walcott RR, Li JQ, Luo LX (2016) Induction of the viable but nonculturable state in Clavibacter michiganensis subsp. michiganensis and in planta resuscitation of the cells on tomato seedlings. Plant Pathol 65:826–836. https://doi.org/10.1111/ppa.12454

    Article  CAS  Google Scholar 

  29. Ihara Y, Ohta H, Masuda S (2015) A highly sensitive quantification method for the accumulation of alarmone ppGpp in Arabidopsis thaliana using UPLC-ESI-qMS/MS. J Plant Res 128(3):511–518. https://doi.org/10.1007/s10265-015-0711-1

    Article  CAS  PubMed  Google Scholar 

  30. Jin H, Lao YM, Zhou J, Zhang HJ, Cai ZH (2018) A rapid UHPLC-HILIC method for algal guanosine 5′-diphosphate 3′-diphosphate (ppGpp) and the potential separation mechanism. J Chromatogr B Anal Technol Biomed Life Sci 1096:143–153. https://doi.org/10.1016/j.jchromb.2018.08.009

    Article  CAS  Google Scholar 

  31. Brockmann-Gretza O, Kalinowski J (2006) Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230. https://doi.org/10.1186/1471-2164-7-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang D-E, Smalley DJ, Conway T (2002) Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306. https://doi.org/10.1046/j.1365-2958.2002.03001.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Weihua Wang and Lili Li (Tsinghua University) for their valuable technical assistance and advice for detection of ppGpp by LC-MS/MS.

Code availability

Not applicable.

Funding

This work was supported by the Natural Science Foundation of China (No. 31571972) and the National Key Research and Development Program of China (No. 2017YFD0201601).

Author information

Authors and Affiliations

Authors

Contributions

LL, JL, and NJ conceived and designed the research. KB wrote this manuscript and analyzed the data. LL and QL revised the manuscript. KB and XC conducted the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laixin Luo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agree to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luc F.M. Rouws

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, K., Chen, X., Jiang, N. et al. Extraction and detection of guanosine 5′-diphosphate-3′-diphosphate in amino acid starvation cells of Clavibacter michiganensis. Braz J Microbiol 52, 1573–1580 (2021). https://doi.org/10.1007/s42770-021-00488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00488-1

Keywords

Navigation