Skip to main content
Log in

Molecular characterization of KPC-2-producing Klebsiella pneumoniae ST258 isolated from bovine mastitis

  • Veterinary Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bovine mastitis, an inflammation of the mammary gland of dairy cattle, is the most prevalent disease causing economically important losses, reduced milk production, early culling, veterinary expenses, and higher death rates. Bovine mastitis infections are the main cause for the use of antibiotics; however, the emergence of multidrug-resistant bacteria and the poor or nil response to antibiotics has become a critical global health problem. The goal of this study was the characterization of bacterial infections associated with clinical bovine mastitis. All the isolates were multidrug-resistant and were negative for the production of extended spectrum β-lactamases. However, all isolates were identified as carbapenemase-producing organisms by the Carba NP test. The carbapenemase identified was the product of the KPC-2 gene. The isolates were identified as Klebsiella pneumoniae and contained virulence genes for fimbriae, lipopolysaccharides, nitrogen starvation genes, and siderophores. Sixty-nine percent of the KPC-2-producing isolates had the same plasmid profile, although the genetic mobilization of resistance by bacterial conjugation was unsuccessful. The carbapenemase corresponded to the plasmid-borne KPC-2 gene identified by Southern blot hybridization. The assay showed a positive signal in the 90 kb (69% of the isolates), 165 kb (31% of the isolates), and 130 kb (6% of the isolates) plasmids. The IncFIIy and IncFIIk replicons were detected among these K. pneumoniae isolates. The PFGE and MLST analysis showed that all of the isolates are comprised by two clones (A and B) belonging to Sequence Type 258. This is the first report of K. pneumoniae producing carbapenemase KPC-2 isolated from bovine mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Thompson-Crispi K, Atalla H, Miglior F, Mallard BA (2014) Bovine mastitis: frontiers in immunogenetics. Front Immunol 5:493

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adkins PRF, Middleton JR (2018) Methods for diagnosing mastitis. Vet Clin North Am Food Anim Pract 4:479–491

    Article  Google Scholar 

  3. Ashraf A, Imran M (2018) Diagnosis of bovine mastitis: from laboratory to farm. Trop Anim Health Prod 50:1193–1202

    Article  PubMed  Google Scholar 

  4. Chehabi CN, Nonnemann B, Astrup LB, Farre M, Pedersen K (2019) In vitro antimicrobial resistance of causative agents to clinical mastitis in Danish dairy cows. Foodborne Pathog Dis 16:562–572

    Article  CAS  PubMed  Google Scholar 

  5. Muñoz MA, Welcome FL, Schukken YH, Zadoks RN (2007) Molecular epidemiology of two Klebsiella pneumoniae mastitis outbreaks on a dairy farm in New York State. J Clin Microbiol 45:3964–3971

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klaas IC, Zadoks RN (2018) An update on environmental mastitis: challenging perceptions. Transbound Emerg Dis 65:166–185

    Article  PubMed  Google Scholar 

  7. Oliver SP, Murinda SE (2012) Antimicrobial resistance of mastitis pathogens. Vet Clin North Am Food Anim Pract 28:165–185

    Article  PubMed  Google Scholar 

  8. Koovapra S, Bandyopadhyay S, Das G, Bhattacharyya D, Banerjee J, Mahanti A, Samanta I, Nanda PK, Kumar A, Mukherjee R, Dimri U, Singh RK (2016) Molecular signature of extended spectrum β-lactamase producing Klebsiella pneumoniae isolated from bovine milk in eastern and north-eastern India. Infect Genet Evol 44:395–402

    Article  CAS  PubMed  Google Scholar 

  9. Locatelli C, Scaccabarozzi L, Pisoni G, Moroni P (2010) CTX-M1 ESBL-producing Klebsiella pneumoniae subsp. pneumoniae isolated from cases of bovine mastitis. J Clin Microbiol 48:3822–3823

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saishu N, Ozaki H, Murase T (2014) CTX-M-type extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from cases of bovine mastitis in Japan. J Vet Med Sci 76:1153–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Timofte D, Maciuca IE, Evans NJ, Williams H, Wattret A, Fick JC, Williams NJ (2014) Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother 58:789–794

    Article  PubMed  PubMed Central  Google Scholar 

  12. Paulin-Curlee GG, Singer RS, Sreevatsan S, Isaacson R, Reneau J, Foster D, Bey R (2007) Genetic diversity of mastitis-associated Klebsiella pneumoniae in dairy cows. J Dairy Sci 90:3681–3689

    Article  CAS  PubMed  Google Scholar 

  13. Saidani M, Messadi L, Soudani A, Daaloul-Jedidi M, Châtre P, Ben Chehida F, Mamlouk A, Mahjoub W, Madec JY, Haenni M (2018) Epidemiology, antimicrobial resistance, and extended-spectrum beta-lactamase-producing Enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb Drug Resist 24:1242–1248

    Article  CAS  PubMed  Google Scholar 

  14. Cheng F, Li Z, Lan S, Liu W, Li X, Zhou Z, Song Z, Wu J, Zhang M, Shan W (2018) Characterization of Klebsiella pneumoniae associated with cattle infections in southwest China using multi-locus sequence typing (MLST), antibiotic resistance and virulence-associated gene profile analysis. Braz J Microbiol 49:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garza-Ramos U, Silva-Sanchez J, Martinez-Romero E, Tinoco P, Pina-Gonzales M, Barrios H (2015) Development of a multiplex-PCR probe system for the proper identification of Klebsiella variicola. BMC Microbiol 15:1–14

    Article  CAS  Google Scholar 

  16. Catalán-Nájera JC, Barrios-Camacho H, Duran-Bedolla J (2019) Corrigendum to “Molecular characterization and pathogenicity determination of hypervirulent Klebsiella pneumoniae clinical isolates serotype K2 in Mexico” [Diagn Microbiol Infect Dis 94(3):316-319]. Diagn Microbiol Infect Dis 96(1):114917

    Article  PubMed  Google Scholar 

  17. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27(1):27–35

    Article  CAS  PubMed  Google Scholar 

  18. Clinical and Laboratory Standards Institute (2017) Performance standards for antimicrobial susceptibility testing. 27th informational supplement (M100-S27), Vol 1-1 Wayne, PA. USA

  19. Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U (2019) Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect 8(1):973–988

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poirel P, Dortet LL (2012) Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 18:1503–1507

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rodríguez-Zulueta P, Silva-Sánchez J, Barrios H, Reyes-Mar J, Vélez-Pérez F, Arroyo-Escalante S, Ochoa-Carrera L, Delgado-Sapien G, Morales-Espinoza MR, Tamayo-Legorreta E, Hernández-Castro R, Garza-Ramos U (2013) First outbreak of KPC-3-producing Klebsiella pneumoniae (ST258) clinical isolates in a Mexican Medical Center. Antimicrob Agents Chemother 57(8):4086–4088

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alcántar-Curiel MD, Blackburn D, Saldaña Z, Gayosso-Vázquez C, Iovine NM, De la Cruz MA, Girón JA (2013) Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 4:129–138

    Article  PubMed  PubMed Central  Google Scholar 

  23. Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM, Drake EJ, Gulick AM (2014) Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun 82:2356–2367

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee CH, Liu JW, Su LH, Chien CC, Li CC, Yang KD (2010) Hypermucoviscosity associated with Klebsiella pneumoniae-mediated invasive syndrome: a prospective cross-sectional study in Taiwan. Int J Infect Dis 14:e688–e692

    Article  PubMed  Google Scholar 

  25. Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R, Diancourt L, Grimont P (2009) Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 4:e4982

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kieser T (1984) Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:19–36

    Article  CAS  PubMed  Google Scholar 

  27. Philippon LN, Naas T, Bouthors AT, Barakett V, Nordmann P (1997) OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 41:2188–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory. xvi, Cold Spring Harbor, p 466

    Google Scholar 

  29. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Fernandez A, Chiaretto G, Bertini A, Villa L, Fortini D, Ricci A et al (2008) Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum beta-lactamases in Escherichia coli and Salmonella of human and animal origin. J Antimicrob Chemother 61:1229–1233

    Article  CAS  PubMed  Google Scholar 

  31. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Preethirani PL, Isloor S, Sundareshan S, Nuthanalakshmi V, Deepthikiran K, Sinha AY, Rathnamma D, Nithin Prabhu K, Sharada R, Mukkur TK, Hegde NR (2015) Isolation, biochemical and molecular identification, and in-vitro antimicrobial resistance patterns of bacteria isolated from bubaline subclinical mastitis in South India. PLoS One 10:e0142717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krömker V, Leimbach S (2017) Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod Domest Anim 52:21–29

    Article  PubMed  Google Scholar 

  35. Cheng J, Qu W, Barkema HW, Nobrega DB, Gao J, Liu G, de Buck J, Kastelic JP, Sun H, Han B (2019) Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J Dairy Sci 102:2416–2426

    Article  CAS  PubMed  Google Scholar 

  36. He T, Wang Y, Sun L, Pang M, Zhang L, Wang R (2017) Occurrence and characterization of blaNDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China. J Antimicrob Chemother 72:90–94

    Article  CAS  PubMed  Google Scholar 

  37. Bidewell CA, Williamson SM, Rogers J, Tang Y, Ellis RJ, Petrovska L, AbuOun M (2018) Emergence of Klebsiella pneumoniae subspecies pneumoniae as a cause of septicaemia in pigs in England. PLoS One 13:e0191958

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tofteland S, Naseer U, Lislevand JH, Sundsfjord A, Samuelsen O (2013) A long-term low-frequency hospital outbreak of KPC-producing Klebsiella pneumoniae involving intergenus plasmid diffusion and a persisting environmental reservoir. PLoS One 8:e59015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stolle I, Prenger-Berninghoff E, Stamm I (2013) Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 68:2802–2808

    Article  CAS  PubMed  Google Scholar 

  40. Woodford N, Wareham DW, Guerra B, Teale C (2014) Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother 69:287–291

    Article  CAS  PubMed  Google Scholar 

  41. Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A (2018) Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 24:1241–1250

    Article  PubMed  Google Scholar 

  42. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel G, Bonomo RA (2013) “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol 14:48

    Google Scholar 

  44. Brkic DV, Pristas I, Cipris I, Jelic M, Butic I, Andrasevic AT (2017) Successful containment of the first KPC-producing Klebsiella pneumoniae outbreak in Croatia. Future Microbiol 12:967–974

    Article  CAS  PubMed  Google Scholar 

  45. Jelić M, Hrenović J, Dekić S, Goić-Barišić I, Tambić Andrašević A (2019) First evidence of KPC-producing ST258 Klebsiella pneumoniae in river water. J Hosp Infect 103:147–150

    Article  PubMed  Google Scholar 

  46. Hamza E, Dorgham SM, Hamza DA (2016) Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J Glob Antimicrob Resist 7:8–10

    Article  PubMed  Google Scholar 

  47. Picão RC, Cardoso JP, Campana EH, Nicoletti AG, Petrolini FV, Assis DM, Juliano L, Gales AC (2013) The route of antimicrobial resistance from the hospital effluent to the environment: focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis 76:80–85

    Article  PubMed  Google Scholar 

  48. Galler H, Feierl G, Petternel C, Reinthaler FF, Haas D, Grisold AJ, Luxner J, Zarfel G (2014) KPC-2 and OXA-48 carbapenemase-harbouring Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clin Microbiol Infect 20:13213–13214

    Article  Google Scholar 

  49. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN (2014) Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pitout JD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andrade LN, Curiao T, Ferreira JC, Longo JM, Clímaco EC, Martinez R, Bellissimo-Rodrigues F, Basile-Filho A, Evaristo MA, del Peloso PF, Ribeiro VB, Barth AL, Paula MC, Baquero F, Cantón R, Darini ALC, Coque TM (2011) Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 55:3579–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garza-Ramos U, Barrios H, Reyna-Flores F, Sánchez-Pérez A, Tamayo-Legorreta E, Ibarra-Pacheco A, Salazar-Salinas J, Núñez-Ceballos R, Silva-Sanchez J (2014) Characteristics of KPC-2-producing Klebsiella pneumoniae (ST258) clinical isolates from outbreaks in 2 Mexican medical centers. Diagn Microbiol Infect Dis 79:483–485

    Article  CAS  PubMed  Google Scholar 

  53. World organization for animal health (2019). OIE list of antimicrobials of veterinary importance. Available from https://www.oie.int/downld/antimicrobials/OIE_list_antimicrobials.pdf (19 july 2019, data last accessed).

  54. Podder MP, Rogers L, Daley PK, Keefe GP, Whitney HG, Tahlan K (2014) Klebsiella species associated with bovine mastitis in Newfoundland. PLoS One 9:e106518

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Michael Dunn form the Center for Genomic Science-UNAM for reviewing the manuscript.

Funding

The present study was supported by grants 256988 and 256927 from SEP-CONACyT (Secretaría de Educación Pública-Consejo Nacional de Ciencia y Tecnología).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rigoberto Hernández-Castro or Ulises Garza-Ramos.

Ethics declarations

Nothing to declare.

Additional information

Responsible Editor: Nilton Lincopan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Sanchez, J., Barrios-Camacho, H., Hernández-Rodriguez, E. et al. Molecular characterization of KPC-2-producing Klebsiella pneumoniae ST258 isolated from bovine mastitis. Braz J Microbiol 52, 1029–1036 (2021). https://doi.org/10.1007/s42770-021-00445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00445-y

Keywords

Navigation