Skip to main content

Advertisement

Log in

Technological properties of autochthonous Lactobacillus plantarum strains isolated from sucuk (Turkish dry-fermented sausage)

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Purpose

Five Lactobacillus strains isolated from sucuk (Turkish dry-fermented sausage) were studied for their genetic and technological properties.

Methods

For genotypic identification, strains 16S rRNA gene sequences were used. To determine the antimicrobial activity of strains, seven foodborne pathogens were tested. Strains technological properties were characterized.

Results

These strains were identified as Lactobacillus plantarum by 16S rRNA gene sequence analysis and the phylogenetic tree obtained by neighbor-joining method allowed grouping of these strains into three subgroups. L. plantarum strains showed antagonistic activities against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Micrococcus luteus strains. PCR assay, using specific primers, showed the presence of bacteriocin (plantaricin) encoding genes in all L. plantarum strains tested. Antimicrobial metabolite production of these strains started at log phase and reached the maximum level at the end of the stationary phase. Regarding their technological properties, better growth was observed at 25 °C compared with 15 °C and 45 °C. The isolates which grown well within the pH scale pH 4.5–6.5 range additionally showed a decent growth at 6.5% salt concentration. It has been found that strains do not exhibit lipolytic and proteolytic activities nor have lysine, ornithine, and arginine decarboxylase activity. On the other hand, one strain showed weak nitrate reductase activity, and four strains produced acetoin from glucose. In addition, all strains were DL-lactic acid producers. Consequently, L. plantarum strains isolated exhibited some biochemical properties required for a starter culture in sucuk and similar products.

Conclusions

All identified strains may be a protective culture in the production of fermented meat products. In particular, L. plantarum S51 was distinguished from other isolates due to the inability to form acetoin from glucose. Further work will be needed to characterize L. plantarum strains as starter culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dalié DKD, Deschamps M, Richard F (2010) Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380. https://doi.org/10.1016/j.foodcont.2009.07.011

    Article  CAS  Google Scholar 

  2. Ojha KS, Kerry JP, Duffy G, Beresford T, Tiwari BK (2015) Technological advances for enhancing quality and safety of fermented meat products. Trends Food Sci Technol 44(1):105–116. https://doi.org/10.1016/j.tifs.2015.03.010

    Article  CAS  Google Scholar 

  3. Leroy F, Scholliers P, Amilien V (2015) Elements of innovation and tradition in meat fermentation: conflicts and synergies. Int J Food Microbiol 212:2–8. https://doi.org/10.1016/j.ijfoodmicro.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  4. Palavecino Prpich NZ, Garro OA, Romero M, Judis MA, Cayré ME, Castro MP (2016) Evaluation of an autochthonous starter culture on the production of a traditional dry fermented sausage from Chaco (Argentina) at a small-scale facility. Meat Sci 115:41–44. https://doi.org/10.1016/j.meatsci.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  5. Aquilanti L, Garofalo C, Osimani A, Clementi F (2016) Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: an overview. Int Food Res J 23(2):429–445

    CAS  Google Scholar 

  6. Nediani M, García L, Saavedra L, Martínez S, López Alzogaray S, Fadda S (2017) Adding value to goat meat: biochemical and technological characterization of autochthonous lactic acid Bacteria to achieve high quality fermented sausages. Microorganisms 5(2):26. https://doi.org/10.3390/microorganisms5020026

    Article  CAS  PubMed Central  Google Scholar 

  7. Gürakan GC, Bozoglu TF, Weiss N (1995) Identification of Lactobacillus strains from Turkish-style dry fermented sausages. LWT-Food Sci Technol 28(1):139–144

    Article  Google Scholar 

  8. Özdemir H (1996) Yuksek sicaklik derecesinde olgunlastirilan Turk fermente sucuklarinda laktobasillerin seyir, izolasyon ve identifikasyonu. Gida 21(6):465–470

    Google Scholar 

  9. Özdemir H (1998) Türk fermente sucugunun florasındaki dominant laktobasil türlerinin sucugun organoleptik nitelikleri ile ilişkisi. Ankara Üniversitesi Veteriner Fakültesi Dergisi 46:189–198

    Google Scholar 

  10. Çon AH, Gokalp HY (2000) Production of bacteriocin-like metabolites by lactic acid cultures isolated from sucuk samples. Meat Sci 55:89–96

    Article  PubMed  Google Scholar 

  11. Kaban G, Kaya M (2008) Identification of lactic acid bacteria and gram-positive catalase-positive cocci isolated from naturally fermented sausage (sucuk). J Food Sci 73(8):385–388. https://doi.org/10.1111/j.1750.3841.2008.00906.x

    Article  Google Scholar 

  12. Adiguzel G, Atasever M (2009) Phenotypic and genotypic characterization of lactic acid bacteria isolated from Turkish dry fermented sausage. Rom Biotechnol Lett 14(1):4130.4138

    Google Scholar 

  13. Kesmen Z, Yetiman E, Gulluce Kacmaz N, Sagdic O, Cetin B, Adigüzel A, Şahin F, Yetim H (2012) Combination of culture-dependent and culture independent molecular methods for the determination of lactic microbiota in sucuk. Int J Food Microbiol 153(3):428–435. https://doi.org/10.1016/j.ijfoodmicro.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  14. De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM (2006) Lactobacillus plantarum survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16(9):1018.1028

    Article  Google Scholar 

  15. Giraffa G, Chanishvili N, Widyastuti Y (2010) Importance of lactobacilli in food and feed biotechnology. Res Microbiol 161(6):480–487

    Article  PubMed  Google Scholar 

  16. Dinçer B, Özdemir H, Mutluer B, Yaglı Ö, Erol İ, Akgün S (1995) Türk fermente sucuğuna özgü starter kültür bakterilerinin izolasyon, identifikasyon ve üretimleri. Ankara Üniv Vet Fak Derg 42:285–293

    Google Scholar 

  17. Papamanoli E, Tzanetakis N, Litopoulou, Tzanetaki E, Kotzekidou P (2003) Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci 65(2):859–867

    Article  CAS  PubMed  Google Scholar 

  18. Drosinos EH, Mataragas M, Xiraphi N, Moschonas G, Gaitis F, Metaxopoulos J (2005) Characterization of the microbial flora from a traditional Greek fermented sausage. Meat Sci 69(2):307–317. https://doi.org/10.1016/j.meatsci.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  19. Drosinos EH, Paramithiotis S, Kolovos G, Tsikouras I, Metaxopoulos I (2007) Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece. Food Microbiol 24(3):260–270. https://doi.org/10.1016/j.fm.2006.05.001

    Article  PubMed  Google Scholar 

  20. Kaban G (2007) Geleneksel olarak üretilen sucuklardan laktik asit bakterileri ile katalaz pozitif kokların izolasyonu identifikasyonu, üretimde kullanılabilme imkânları ve uçucu bileşikler üzerine etkileri. Doktora Tezi, Atatürk Üniversitesi. Fen Bilimleri Enstitüsü, Erzurum

  21. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55(8):1901–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Altuntas EG, Cosansu S, Ayhan K (2010) Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int J Food Microbiol 141(1–2):28–31. https://doi.org/10.1016/j.ijfoodmicro.2010.04.024

    Article  CAS  PubMed  Google Scholar 

  23. Barış Ö (2009) Erzurum İlindeki Mağaralarda Damlataşı Oluşumunda Etkili Bakterilerin İzolasyonu Karakterizasyonu Ve Tanısı. Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Erzurum

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Omar NB, Abriouel H, Keleke S, Valenzuela AS, Martínez-Cañamero M, López RL, Ortega E, Gálvez A (2008) Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol 127(1–2):18–25

    PubMed  Google Scholar 

  27. Biswas SR, Ray P, Johnson MC, Ray B (1991) Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol 57(4):1265–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Reenen CA, Dicks LMT, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84(6):1131–1137

    Article  PubMed  Google Scholar 

  29. Harrigan WF (1998) Laboratory methods in food microbiology. Academic Press. California 92101.4495, USA, 100

  30. Kloos WE, Schleifer KH (1975) Simplified scheme for routine ıdentification of human Staphylococcus species. J Clin Microbiol 1(1):82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  32. Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford university press, Oxford

    Google Scholar 

  33. Kaban G, Kaya M (2006) Effect of starter culture on growth of Staphylococcus aureus in sucuk. Food Control 17(10):797–801. https://doi.org/10.1016/j.foodcont.2005.05.003

    Article  CAS  Google Scholar 

  34. Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57(6):1683–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Todorov SD, Stojanovski S, Iliev I, Moncheva P, Nero LA, Ivanova IV (2017) Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “lukanka.”. Braz J Microbiol 48(3):576–586. https://doi.org/10.1016/j.bjm.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbosa M, Todorov SD, Ivanova I, Chobert JM, Haertlé T, de Melo Franco BDG (2015) Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol 46:254–262. https://doi.org/10.1016/j.fm.2014.08.004

    Article  CAS  Google Scholar 

  37. Sawitzki MC, Fiorentini ÂM, Bertol TM, Sant'Anna ES (2009) Lactobacillus plantarum strains isolated from naturally fermented sausages and their technological properties for application as starter cultures. Food Sci Technol 29(2):340–345

    Article  Google Scholar 

  38. Toksoy A, Beyatli Y, Aslim B (1999) Sucuk ve sosislerden izole edilen Lactobacillus plantarum suşlarının bazı metabolik ve antimikrobiyal aktivitelerinin incelenmesi. Turk J Vet Anim Sci 23(6):533–540

    Google Scholar 

  39. Remiger A, Ehrmann M, Vogel RF (1996) Identification of Bacteriocin encoding genes in lactobacilli by polymerase chain reaction (PCR). Syst Appl Microbiol 19(1):28–34. https://doi.org/10.1016/S0723.2020(96)80005.1

    Article  CAS  Google Scholar 

  40. Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178(15):4472–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. François ZN, Marie KP, Azemfack T, Noëlle H (2013) Antimicrobial activity of a bacteriocin produced by Lactobacillus plantarum 29V and strain’ s viability in palm kernel oil, International Journal of Food Sciences and Nutrition. 2(3):102–108. https://doi.org/10.11648/j.ijnfs.20130203.12

  42. Barbosa MS, Todorov SD, Ivanova IV, Belguesmia Y, Choiset Y, Rabesona H, Chobert JM, Haertle T, Franco BDGM (2016) Characterization of a two-peptide plantaricin produced by Lactobacillus plantarum MBSa4 isolated from Brazilian salami. Food Control 60:103–112. https://doi.org/10.1016/j.foodcont.2015.07.029

    Article  CAS  Google Scholar 

  43. Todorov SD, Gotcheva B, Dousset X, Onno B, Ivanova I (2014) Influence of growth medium on bacteriocin production in Lactobacillus plantarum ST31. Biotechnol Biotechnol Equip 14(1):50–55. https://doi.org/10.1080/13102818.2000.10819062

    Article  Google Scholar 

  44. Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA.K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA.K to Listeria sp. Braz J Microbiol 39(1):178–187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schillinger U, Lücke FK (1987) Identification of lactobacilli from meat and meat products. Food Microbiol 4(3):199–208

    Article  Google Scholar 

  46. Toldrá F, Rico E, Flores J (1992) Activities of pork muscle proteases in model cured meat systems. Biochimie 74(3):291–296

    Article  PubMed  Google Scholar 

  47. Lücke FK, Hechelmann H (1987) Starter cultures for dry sausages and raw ham composition and effect. Fleischwirtschaft 67(3):307.314

    Google Scholar 

  48. Kaya M, Kaban G (2010) Fermente Et Ürünleri. In: Aran N (ed) Gıda Biyoteknolojisi İstanbul. Türkiye, Nobel Yayın, pp 157–190

    Google Scholar 

  49. Kaban G, Kaya M, Lücke FK (2012) Meat starter cultures. Encycl Biotechnol Agric Food, 1–4

  50. Paik HD, Lee JY (2014) Investigation of reduction and tolerance capability of lactic acid bacteria isolated from kimchi against nitrate and nitrite in fermented sausage condition. Meat Sci 97(4):609–614. https://doi.org/10.1016/j.meatsci.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  51. Bover-cid S, Hugas M, Izquierdo-pulido M, Vidal-carou MC (2001) Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int J Food Microbiol 66(3):185–189

    Article  CAS  PubMed  Google Scholar 

  52. Moracanin SV, Stefanovic S, Radicevic T, Borovic B, Djukic D (2015) Production of biogenic amines by lactic acid Bacteria isolated from Uzicka sausages. Proce Food Sci 5:308–311. https://doi.org/10.1016/j.profoo.2015.09.068

    Article  Google Scholar 

  53. Essid I, Medini M, Hassouna M (2009) Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Sci 81(1):203–208. https://doi.org/10.1016/j.meatsci.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  54. Speranza B, Racioppo A, Beneduce L, Bevilacqua A, Sinigaglia M, Corbo MR (2017) Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish based products. Food Microbiol 65:244–253. https://doi.org/10.1016/j.fm.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  55. Zeng X, Xia W, Wang J, Jiang Q, Xu Y, Qiu Y, Wang H (2014) Technological properties of Lactobacillus plantarum strains isolated from Chinese traditional low salt fermented whole fish. Food Control 40:351–358. https://doi.org/10.1016/j.foodcont.2013.11.048

    Article  CAS  Google Scholar 

  56. Holzapfel WH, Haberer P, Snel J, Schillinger U (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101. https://doi.org/10.1016/S0168.1605(98)00044.0

    Article  CAS  PubMed  Google Scholar 

  57. Montel MC, Reitz J, Talon R, Berdagué JL, Rousset-Akrim S (1996) Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiol 13(6):489–499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aybike Kamiloğlu.

Additional information

Responsible Editor: Luis Augusto Nero.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiloğlu, A., Kaban, G. & Kaya, M. Technological properties of autochthonous Lactobacillus plantarum strains isolated from sucuk (Turkish dry-fermented sausage). Braz J Microbiol 51, 1279–1287 (2020). https://doi.org/10.1007/s42770-020-00262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00262-9

Keywords

Navigation