Skip to main content

Advertisement

Log in

β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to evaluate the ability of lapachones in disrupting the fungal multidrug resistance (MDR) phenotype, using a model of study which an azole-resistant Saccharomyces cerevisiae mutant strain that overexpresses the ATP-binding cassette (ABC) transporter Pdr5p.

Methods

The evaluation of the antifungal activity of lapachones and their possible synergism with fluconazole against the mutant S. cerevisiae strain was performed through broth microdilution and spot assays. Reactive oxygen species (ROS) and efflux pump activity were assessed by fluorometry. ATPase activity was evaluated by the Fiske and Subbarow method. The effect of β-lapachone on PDR5 mRNA expression was assessed by RT-PCR. The release of hemoglobin was measured to evaluate the hemolytic activity of β-lapachone.

Results

α-nor-Lapachone and β-lapachone inhibited S. cerevisiae growth at 100 μg/ml. Only β-lapachone enhanced the antifungal activity of fluconazole, and this combined action was inhibited by ascorbic acid. β-Lapachone induced the production of ROS, inhibited Pdr5p-mediated efflux, and impaired Pdr5p ATPase activity. Also, β-lapachone neither affected the expression of PDR5 nor exerted hemolytic activity.

Conclusions

Data obtained indicate that β-lapachone is able to inhibit the S. cerevisiae efflux pump Pdr5p. Since this transporter is homologous to fungal ABC transporters, further studies employing clinical isolates that overexpress these proteins will be conducted to evaluate the effect of β-lapachone on pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dudoignon E, Alanio A, Anstey J, Coutrot M, Fratani A, Jully M et al (2019) Outcome and potentially modifiable risk factors for candidemia in critically ill burns patients: a matched cohort study. Mycoses 62:237–246

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Ami R (2018) Treatment of invasive candidiasis: a narrative review. J Fungi 4:97

    Article  CAS  Google Scholar 

  3. Healey KR, Perlin DS (2018) Fungal resistance to Echinocandins and the MDR phenomenon in Candida glabrata. J Fungi 4:105

    CAS  Google Scholar 

  4. Sanguinetti M, Posteraro B (2015) Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58:2–13

    Article  PubMed  Google Scholar 

  5. Cardno TS, Ivnitski-steele I, Lackovic K, Cannon RD (2016) Targeting efflux pumps to overcome antifungal drug resistance. Future Med Chem 8:1485–1501

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh S, Fatima Z, Ahmad K, Hameed S (2018) Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism. PLoS One 13:e0203079

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cavalheiro M, Pais P, Galocha M (2018) Host-pathogen interactions mediated by MDR transporters in fungi: as pleiotropic as it gets! Genes 9:332

    Article  PubMed Central  Google Scholar 

  8. Golin J, Ambudkar SV (2015) The multidrug transporter Pdr5 on the 25th anniversary of its discovery: an important model for the study of asymmetric ABC transporters. Biochem J 467:353–363

    Article  CAS  PubMed  Google Scholar 

  9. Prasad R, Wergifosse PD (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329

    Article  CAS  PubMed  Google Scholar 

  10. Sanglard D, Ischer F, Monod M, Billel J (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology:405–416

  11. Demuyser L, Van Dijck P (2019) Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research ? Drug Resist Updat 42:22–34

    Article  PubMed  Google Scholar 

  12. Oliveira D, Sousa E, Alves S, Tomaz V, Suarez S, Lima M et al (2016) Effects of a novel b-lapachone derivative on Trypanosoma cruzi : parasite death involving apoptosis, autophagy and necrosis. Int J Parasitol Drugs Resist 6:207–219

    Article  Google Scholar 

  13. Yang Y, Zhou X, Xu M, Piao J, Zhang Y, Lin Z (2017) β-Lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci Rep 7:2681

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moraes DC, Curvelo JAR, Anjos CA, Moura KCG, Pinto MCFR, Portela MB (2018) β-Lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors. J Mycol Med 28:314–319

    Article  CAS  PubMed  Google Scholar 

  15. Decottignies A, Kolaczkowski M, Balzi E, Goffeau A (1994) Solubilization and characterization of the overexpressed PDR5 multidrug resistance nucleotide triphosphatase of yeast. J Biol Chem 269:12797–12803

    CAS  PubMed  Google Scholar 

  16. Hooker SC (1936) The constitution of lapachol and its derivatives. Part IV. Oxidation with potassium permanganate. J Am Chem Soc 58:1168–1173

    Article  CAS  Google Scholar 

  17. Rex JH, Alexander BD, Andes D, Arthington-Skaggs B, Brown SD, Chaturvedi V et al (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard-third edition. Clin Lab Stand Inst:1–25

  18. Niimi K, Harding DRK, Parshot R, King A, Lun DJ, Decottignies A, Niimi M, Lin S, Cannon RD, Goffeau A, Monk BC (2004) Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative. Antimicrob Agents Chemother 48:1256–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Figueira L, De Sá R, Toledo FT, De Sousa BA, Gonçalves AC, Tessis AC et al (2014) Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae. BMC Microbiol:1–9

  20. Bueno I, Batista J, Rocha T, Silva M (2015) Diphenyl diselenide ( PhSe )2 inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. J Trace Elem Med Biol 29:289–295

    Article  Google Scholar 

  21. Keniya MV, Fleischer E, Klinger A, Cannon RD (2015) Inhibitors of the Candida albicans major facilitator superfamily transporter Mdr1p responsible for fluconazole resistance. PLoS One 10:e0126350

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rangel LP, Fritzen M, Yunes RA, Leal PC, Creczynski-Pasa TB, Ferreira-Pereira A (2010) Inhibitory effects of gallic acid derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p. FEMS Yeast Res 10:244–251

    Article  CAS  Google Scholar 

  23. Dulley JR (1975) Determination of inorganic phosphate in the presence of detergents or protein. Anal Biochem 67:91–96

    Article  CAS  PubMed  Google Scholar 

  24. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66-375:400

    Google Scholar 

  25. Hwang JH, Choi H, Kim AR, Yun JW, Yu R, Woo ER, Lee DG (2014) Hibicuslide C-induced cell death in Candida albicans involves apoptosis mechanism. J Appl Microbiol 117:1400–1411

    Article  CAS  PubMed  Google Scholar 

  26. Ricardo E, Costa-de-oliveira S, Dias AS (2009) Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes. FEMS Yeast Res 9:618–625

    Article  CAS  PubMed  Google Scholar 

  27. Valach M (2016) RNA extraction using the “home-made” TRIzol substitute. protocols.io. http://www.protocols.io/view/RNA-extraction-using-the-home-made-Trizol-substitu-eiebcbe. Accessed 10 July 2019

  28. De Oliveira HC, Monteiro MC, Rossi AS (2019) Identification of off-patent compounds that present antifungal activity against the emerging fungal pathogen Candida auris. Front Cell Infect Microbiol 9:1–10

    Article  Google Scholar 

  29. Wang C, Zhang Y, Zhang W, Yuan S, Ng T, Ye X (2019) Purification of an antifungal peptide from seeds of Brassica oleracea var gongylodes and investigation of its antifungal activity and mechanism of action. Molecules 24:1337

    Article  PubMed Central  Google Scholar 

  30. Spitzer M, Robbins N, Wright GD (2017) Combinatorial strategies for combating invasive fungal infections. Virulence 8:169–185

    Article  CAS  PubMed  Google Scholar 

  31. Prasad R, Rawal MK (2014) Efflux pump proteins in antifungal resistance. Front Pharmacol 5:1–13

    Article  CAS  Google Scholar 

  32. Menacho-Márquez M, Murguia JR (2006) β-Lapachone activates a Mre11p-Tel1p G1/S checkpoint in budding yeast. Cell Cycle 5:2509–2516

    Article  PubMed  Google Scholar 

  33. Silva JL, Mesquita ARC, Ximenes EA (2009) In vitro synergic effect of β -lapachone and isoniazid on the growth of Mycobacterium fortuitum and Mycobacterium smegmatis. Mem Inst Oswaldo Cruz 104:580–582

    Article  PubMed  Google Scholar 

  34. Macedo L, Fernandes T, Silveira L, Mesquita A, Franchitti AA, Ximenes EA (2013) β-Lapachone activity in synergy with conventional antimicrobials against methicillin resistant Staphylococcus aureus strains. Phytomedicine 21:25–29

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Pérez C, Lorenzo-Castrillejo I, Quevedo O, García-Luis J, Matos-Perdomo E, Medina-Coello C, Estévez-Braun A, Machín F (2014) Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule or topoisomerase-mediated DNA damage. Biochem Pharmacol 92:206–219

    Article  PubMed  Google Scholar 

  36. Anaissi-Afonso L, Oramas-Royo S, Ayra-Plasencia J, Martín-Rodríguez P, García-Luis J, Lorenzo-Castrillejo I et al (2018) Lawsone, juglone, and β-lapachone derivatives with enhanced mitochondrial-based toxicity. ACS Chem Biol 13:1950–1957

    Article  CAS  PubMed  Google Scholar 

  37. Menacho-Márquez M, Rodríguez-Hernández CJ, Villarong MÁ, Pérez-Valle J, Gadea J, Belandia B et al (2015) EIF2 kinases mediate β-lapachone toxicity in yeast and human cancer cells. Cell Cycle 14:630–640

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li DD, Chai D, Huang XW, Guan SX, Du J, Zhang HY et al (2017) Potent in vitro synergism of fluconazole and osthole against fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 61:e00436–e00417

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ivnitski-steele I, Holmes AR, Lamping E, Monk BC, Richard D, Sklar LA (2009) Identification of Nile red as a fluorescent substrate of the Candida albicans ABC transporters Cdr1p and Cdr2p and the MFS transporter Mdr1p. Anal Biochem 394:87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma M, Prasad R (2011) The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother 55:4834–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loo TW, Clarke DM (2014) Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation. Biochem Pharmacol 92:558–566

    Article  CAS  PubMed  Google Scholar 

  42. Chazotte B (2011) Labeling mitochondria with JC-1. Cold Spring Harb Protoc 6:1103–1104

    Google Scholar 

  43. Menna-Barreto RFS, Corrêa JR, Pinto AV, Soares MJ, De Castro SL (2007) Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitol Res 101:895–905

    Article  CAS  PubMed  Google Scholar 

  44. Li YZ, Li CJ, Pinto AV, Pardee AB (1999) Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by β-lapachone in human carcinoma cells. Mol Med 5:232–239

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil) and Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors would like to thank Geralda Rodrigues Almeida for the technical support.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Ferreira-Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luis Henrique Souza Guimaraes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes, D.C., Cardoso, K.M., Domingos, L.T.S. et al. β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain. Braz J Microbiol 51, 1051–1060 (2020). https://doi.org/10.1007/s42770-020-00254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00254-9

Keywords

Navigation