Skip to main content

Advertisement

Log in

Biomass-glycerol briquettes are not necessarily mechanically stable and energetically effective

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

The re-use of glycerol from biodiesel industry as an alternative lubricant for making high-performance briquettes is usual. However, the technical performance of this agro-industrial residue is not consistent. This study outlines, accordingly, the real risk of introducing glycerol into the co-briquetting of highly caloric by-products of energy-crops. The production of hybrid briquettes consisted of pressing mixtures of residues of sugarcane and sorghum with the liquid additive at 10, 20, and 30 wt.% in bench-scale hydraulic piston presser machine. Irrespective of the blend, briquettes containing the supplement at the highest level as part of their composition ended up being much more hygroscopic (20.10%) and less energetic (3.15 GJ m−3). The explanation for the negative impact of glycerol on the thermomechanical behavior of briquettes would be overconcentration of additive capable of effectively defying compacting biomass. The degree of compaction during co-briquetting has likely gone down quickly with a maximizing level of glycerol. As long as the additive is not able to lubricate the feedstock suitably, improbability of biomass particles to successfully bond together to form themselves into mechanically stable and energetically effective briquettes is large. Besides lower density (273.80 kg m−3) and higher relaxation (22.75%), briquettes with glycerol at 30 wt.% generally were aesthetically unpleasing. Practically, these products resisted no longer to handling, transportation, and storage. They lost their shape easily during emptying and shifting them, thus, releasing larger quantities of biomass to the environment. Preliminary evidence of high-viscosity glycerol capable of limiting safe and effective production of high-performance briquettes for heating and power exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambat I, Srivastava V, Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sustain Energy Rev. 2018;90:356–69. https://doi.org/10.1016/j.rser.2018.03.069.

    Article  CAS  Google Scholar 

  2. Monteiro MR, Kugelmeier CL, Pinheiro RS, et al. Glycerol from biodiesel production: technological paths for sustainability. Renew Sustain Energy Rev. 2018;88:109–22. https://doi.org/10.1016/j.rser.2018.02.019.

    Article  CAS  Google Scholar 

  3. Tauro R, García CA, Skutsch M, et al. The potential for sustainable biomass pellets in Mexico: an analysis of energy potential, logistic costs and market demand. Renew Sustain Energy Rev. 2018;82:380–9. https://doi.org/10.1016/j.rser.2017.09.036.

    Article  Google Scholar 

  4. Marrugo G, Valdés CF, Gómez C, et al. Pelletizing of Colombian agro-industrial biomasses with crude glycerol. Renewable Energy. 2019;134:558–68. https://doi.org/10.1016/j.renene.2018.11.004.

    Article  CAS  Google Scholar 

  5. Fantozzi F, Frassoldati A, Bartocci P, et al. An experimental and kinetic modeling study of glycerol pyrolysis. Appl Energy. 2016;184:68–76. https://doi.org/10.1016/j.apenergy.2016.10.018.

    Article  CAS  Google Scholar 

  6. McNutt J, Yang J. Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renew Sustain Energy Rev. 2017;71:63–76. https://doi.org/10.1016/j.rser.2016.12.110.

    Article  CAS  Google Scholar 

  7. Charisiou ND, Polychronopoulou K, Asif A, et al. The potential of glycerol and phenol towards H2 production using steam reforming reaction: a review. Surf Coat Technol. 2018;352:92–111. https://doi.org/10.1016/j.surfcoat.2018.08.008.

    Article  CAS  Google Scholar 

  8. Vershinina KY, Shlegel NE, Strizhak PA. Impact of environmentally attractive additives on the ignition delay times of slurry fuels: experimental study. Fuel. 2019;238:275–88. https://doi.org/10.1016/j.fuel.2018.10.132.

    Article  CAS  Google Scholar 

  9. Bala-Litwiniak A, Radomiak H. Possibility of the utilization of waste glycerol as an addition to wood pellets. Waste Biomass Valor. 2019, 10:2193-9. https://doi.org/10.1007/s12649-018-0260-7.

    Article  Google Scholar 

  10. Bartocci P, Bidini G, Asdrubali F, et al. Batch pyrolysis of pellet made of biomass and crude glycerol: mass and energy balances. Renewable Energy. 2018;124:172–9. https://doi.org/10.1016/j.renene.2017.06.049.

    Article  CAS  Google Scholar 

  11. Potip S, Wongwuttanasatian T. Combustion characteristics of spent coffee ground mixed with crude glycerol briquette fuel. Combust Sci Technol. 2018;190:2030–43. https://doi.org/10.1080/00102202.2018.1482888.

    Article  CAS  Google Scholar 

  12. Muazu RI, Stegemann JA. Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel. 2017;194:339–47. https://doi.org/10.1016/j.fuel.2017.01.019.

    Article  CAS  Google Scholar 

  13. Onukak IE, Mohammed-Dabo IA, Ameh AO, et al. Production and characterization of biomass briquettes from tannery solid waste. Recycling. 2017;2:17. https://doi.org/10.3390/recycling2040017.

    Article  Google Scholar 

  14. Law HC, Gan LM, Gan HL. Experimental study on the mechanical properties of biomass briquettes from different agricultural residues combination. MATEC Web Conf. 2018;225:04026. https://doi.org/10.1051/matecconf/201822504026.

    Article  Google Scholar 

  15. Christoforou E, Fokaides PA. Sustainability considerations of solid biofuels production and exploitation. In: Christoforou E, Fokaides PA, (eds). Advances in solid biofuels. Cham: Springer International Publishing; 2019. pp. 97–109.

    Chapter  Google Scholar 

  16. Missagia B, Corrêa MFS, Ahmed I, et al. Comparative analysis of brazilian residual biomass for pellet production. In: Schmidt M, Onyango V, Palekhov D, (eds). Implementing environmental and resource management. Berlin, Heidelberg: Springer; 2011. p. 7–14.

    Chapter  Google Scholar 

  17. Mustelier NL, Almeida MF, Cavalheiro J, et al. Evaluation of pellets produced with undergrowth to be used as biofuel. Waste Biomass Valor. 2012;3:285–94. https://doi.org/10.1007/s12649-012-9127-5.

    Article  Google Scholar 

  18. Dinesha P, Kumar S, Rosen MA. Biomass briquettes as an alternative fuel: a comprehensive review. Energy Technol. 2019;7:1801011. https://doi.org/10.1002/ente.201801011.

    Article  Google Scholar 

  19. Jonsson R, Rinaldi F. The impact on global wood-product markets of increasing consumption of wood pellets within the European Union. Energy. 2017;133:864–78. https://doi.org/10.1016/j.energy.2017.05.178.

    Article  Google Scholar 

  20. Whittaker C, Shield I. Factors affecting wood, energy grass and straw pellet durability—a review. Renew Sustain Energy Rev. 2017;71:1–11. https://doi.org/10.1016/j.rser.2016.12.119.

    Article  Google Scholar 

  21. Unrean P, Lai Fui BC, Rianawati E, et al. Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies. Energy. 2018;151:581–93. https://doi.org/10.1016/j.energy.2018.03.112.

    Article  Google Scholar 

  22. Wang T, Li Y, Zhang J, et al. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel. Waste Manage. 2018;74:260–6. https://doi.org/10.1016/j.wasman.2017.11.043.

    Article  CAS  Google Scholar 

  23. Malico I, Nepomuceno Pereira R, Gonçalves AC, et al. Current status and future perspectives for energy production from solid biomass in the European industry. Renew Sustain Energy Rev. 2019;112:960–77. https://doi.org/10.1016/j.rser.2019.06.022.

    Article  Google Scholar 

  24. Sahoo K, Bilek E, Bergman R, et al. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Appl Energy. 2019;235:578–90. https://doi.org/10.1016/j.apenergy.2018.10.076.

    Article  Google Scholar 

  25. Sakkampang C, Wongwuttanasatian T. Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel. 2014;115:186–9. https://doi.org/10.1016/j.fuel.2013.07.023.

    Article  CAS  Google Scholar 

  26. Garcia DP, Caraschi JC, Ventorim G, et al. Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA). Renewable Energy. 2019;139:796–805. https://doi.org/10.1016/j.renene.2019.02.103.

    Article  CAS  Google Scholar 

  27. Mendoza Martinez CL, Sermyagina E, De Cassia Oliveira Carneiro A, et al. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy. 2019;123:70–7. https://doi.org/10.1016/j.biombioe.2019.02.013.

    Article  CAS  Google Scholar 

  28. Lubwama M, Yiga VA. Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renewable Energy. 2017;111:532–42. https://doi.org/10.1016/j.renene.2017.04.041.

    Article  Google Scholar 

  29. Lu D, Tabil LG, Wang D, et al. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenerg. 2014;69:287–96. https://doi.org/10.1016/j.biombioe.2014.07.029.

    Article  CAS  Google Scholar 

  30. Avelar NV, Rezende AAP, Carneiro ADCO, et al. Evaluation of briquettes made from textile industry solid waste. Renewable Energy. 2016;91:417–24.

    Article  CAS  Google Scholar 

  31. Nakashima GT, Martins MP, Hansted ALS, et al. Sugarcane trash for energy purposes: storage time and particle size can improve the quality of biomass for fuel? Ind Crops Prod. 2017;108:641–8. https://doi.org/10.1016/j.indcrop.2017.07.017.

    Article  Google Scholar 

  32. De Paula Protásio T, Trugilho PF, de Siqueira HF, et al. Caracterização energética de pellets in natura e torrificados produzidos com madeira residual de Pinus. Pesquisa Florestal Brasileira. 2015;35(84):435–42.

    Article  Google Scholar 

  33. Tumuluru JS. Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resour Conv. 2018;1:44–54. https://doi.org/10.1016/j.crcon.2018.06.002.

    Article  Google Scholar 

  34. Gilvari H, de Jong W, Schott DL. Quality parameters relevant for densification of bio-materials: measuring methods and affecting factors—a review. Biomass Bioenerg. 2019;120:117–34. https://doi.org/10.1016/j.biombioe.2018.11.013.

    Article  CAS  Google Scholar 

  35. Smith AKDG, Alesi LS, Varanda LD, et al. Production and evaluation of briquettes from urban pruning residue and sugarcane bagasse. Revista Brasileira de Engenharia Agrícola e Ambiental. 2019;23(2):138–43. https://doi.org/10.1590/1807-1929/agriambi.v23n2p138-143.

    Article  Google Scholar 

  36. Ríos-Badrán IM, Luzardo-Ocampo I, García-Trejo JF, et al. Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy. 2020;145:500–7. https://doi.org/10.1016/j.renene.2019.06.048.

    Article  CAS  Google Scholar 

  37. Nanda S, Mohanty P, Pant KK, et al. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res. 2013;6:663–77. https://doi.org/10.1007/s12155-012-9281-4.

    Article  CAS  Google Scholar 

  38. Cardozo E, Erlich C, Alejo L, et al. Combustion of agricultural residues: an experimental study for small-scale applications. Fuel. 2014;115:778–87. https://doi.org/10.1016/j.fuel.2013.07.054.

    Article  CAS  Google Scholar 

  39. Teixeira SR, Arenales A, de Souza AE, et al. Sugarcane Bagasse: Applications for Energy Production and Ceramic Materials. J Solid Wast Techn Manag. 2015, 41(3): 229–38. https://www.ingentaconnect.com/content/jswt/jswt/2015/00000041/00000003/art00001

  40. Mohlala LM, Bodunrin MO, Awosusi AA, et al. Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: a short overview. Alexandria Eng J. 2016;55:3025–36. https://doi.org/10.1016/j.aej.2016.05.014.

    Article  Google Scholar 

  41. Cardozo E, Malmquist A. Performance comparison between the use of wood and sugarcane bagasse pellets in a Stirling engine micro-CHP system. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.113945.

    Article  Google Scholar 

  42. Quispe CAG, Coronado CJR, Carvalho JA Jr. Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev. 2013;27:475–93. https://doi.org/10.1016/j.rser.2013.06.017.

    Article  CAS  Google Scholar 

  43. Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng. 2006;94:821–9. https://doi.org/10.1002/bit.21025.

    Article  CAS  Google Scholar 

  44. Conag AT, Villahermosa JER, Cabatingan LK, et al. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. J Environ Chem Eng. 2017;5:5411–9. https://doi.org/10.1016/j.jece.2017.10.032.

    Article  CAS  Google Scholar 

  45. Quirino WF. Densitometria de raios x na análise da qualidade de briquetes de resíduos de madeira. Sci For. 2012;40:12.

    Google Scholar 

  46. Brunerová A, Roubík H, Brožek M. Bamboo fiber and sugarcane skin as a bio-briquette fuel. Energies. 2018;11:2186. https://doi.org/10.3390/en11092186.

    Article  CAS  Google Scholar 

  47. Abedi A, Cheng H, Dalai AK. Effects of natural additives on the properties of sawdust fuel pellets. Energy Fuels. 2018;32:1863–73. https://doi.org/10.1021/acs.energyfuels.7b03663.

    Article  CAS  Google Scholar 

  48. Emadi B, Iroba KL, Tabil LG. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Appl Energy. 2017;198:312–9. https://doi.org/10.1016/j.apenergy.2016.12.027.

    Article  CAS  Google Scholar 

  49. Jiang L, Yuan X, Xiao Z, et al. A comparative study of biomass pellet and biomass-sludge mixed pellet: energy input and pellet properties. Energy Convers Manage. 2016;126:509–15. https://doi.org/10.1016/j.enconman.2016.08.035.

    Article  Google Scholar 

  50. Li H, Wang S, Huang Z, et al. Effect of hydrothermal carbonization on storage process of woody pellets: Pellets’ properties and aldehydes/ketones emission. Biores Technol. 2018;260:115–23. https://doi.org/10.1016/j.biortech.2018.03.095.

    Article  CAS  Google Scholar 

  51. Kaliyan N, Morey RV. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Biores Technol. 2010;101:1082–90. https://doi.org/10.1016/j.biortech.2009.08.064.

    Article  CAS  Google Scholar 

  52. Huang Y, Finell M, Larsson S, et al. Biofuel pellets made at low moisture content—influence of water in the binding mechanism of densified biomass. Biomass Bioenerg. 2017;98:8–14. https://doi.org/10.1016/j.biombioe.2017.01.002.

    Article  CAS  Google Scholar 

  53. Soares LDS, Maia AAD, Moris VAS, et al. Study of the effects of the addition of coffee grounds and sugarcane fibers on thermal and mechanical properties of briquettes. J Nat Fibers. 2020;17:1430–8. https://doi.org/10.1080/15440478.2019.1578325.

    Article  CAS  Google Scholar 

  54. Srivastava NSL, Narnaware SL, Makwana JP, et al. Investigating the energy use of vegetable market waste by briquetting. Renewable Energy. 2014;68:270–5. https://doi.org/10.1016/j.renene.2014.01.047.

    Article  Google Scholar 

  55. Tongcumpou C, Usapein P, Tuntiwiwattanapun N. Complete utilization of wet spent coffee grounds waste as a novel feedstock for antioxidant, biodiesel, and bio-char production. Ind Crops Prod. 2019;138:111484. https://doi.org/10.1016/j.indcrop.2019.111484.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the National Council for Science and Technological Development of Brazil for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rafael de Almeida Moreira.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, B.R.d., Viana, R.d., Moreira, S.D. et al. Biomass-glycerol briquettes are not necessarily mechanically stable and energetically effective. Waste Dispos. Sustain. Energy 2, 291–303 (2020). https://doi.org/10.1007/s42768-020-00048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00048-7

Keywords

Navigation