Skip to main content
Log in

A Review of Multifunctional Nanocomposite Fibers: Design, Preparation and Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Nanocomposite fibers are fibrous materials with specific properties and functionalities, which are prepared by introducing nanomaterials or nanostructures in the fibers. Polymeric nanocomposite fibers exhibit multiple functionalities, showing great application potential in healthcare, aerospace, mechanical engineering, and energy storage. Here, six functionalities of polymer nanocomposite fibers are reviewed: mechanical reinforcement, resistance to electromagnetic interference and flame, thermal and electrical conduction, generation of far-infrared ray, negative ion and electricity, energy storage, and sensing. For each functionality, the fiber component selection and preparation methods are summarized. The commonly used polymers comprise natural and synthetic polymers, and typical nanomaterials include carbon-based, polymer-based, metal-based, and metal oxide-based ones. Various compounding strategies and spinning approaches, such as wet-spinning, melt-spinning, and electrospinning, are introduced. Moreover, the functional properties of fibers fabricated from different constituents and by different strategies are compared, providing a reference for performance optimization. Finally, the prospective directions of research and application are discussed, and possible approaches are suggested to facilitate the development of advanced nanocomposite fibers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon request.

References

  1. Shaarawy S. A Review on the development of innovative capabilities in the textile finishing of natural fibers. Egypt J Chem. 2020;63:857.

    Google Scholar 

  2. Hussain T, Masood R, Umar M. Development and characterization of alginate-chitosan-hyaluronic acid (ACH) composite fibers for nedical applications. Fiber Polym. 2016;17(11):1749.

    Article  CAS  Google Scholar 

  3. Holbery J, Houston D. natural-fiber-reinforced polymer composites applications in automotive. JOM. 2006;58(11):80.

    Article  CAS  Google Scholar 

  4. Williams G, Trask R, Bond I. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A-Appl S. 2007;38(6):1525.

    Article  Google Scholar 

  5. Yu DS, Goh K, Wang H. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nature Nanotech. 2014;9(7):555.

    Article  ADS  CAS  Google Scholar 

  6. Habib D, Locke DC, Cannone LJ. Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents. Water Air Soil Poll. 1998;103(1–4):1.

    Article  ADS  CAS  Google Scholar 

  7. Weng W, Yang J, Zhang Y, et al. A route toward smart system integration: from fiber design to device construction. Adv Mater. 2020;32(5):1902301.

    Article  CAS  Google Scholar 

  8. Kamide K. First commercialization, dead rock, and quick decay after temporary prosperity of cellulose nitrate rayon industry as predecessor of chemical fiber industry. Nara Sangyo Univ J Ind Econ. 2003;18(3):313.

    Google Scholar 

  9. Roger B. Filamentary graphite and method for producing the same. U.S. Patent 2957756. 1960.

  10. Gao C, Han Y, Chen C. Graphene/nylon 6 fabric with permanent far-infrared health care function and its preparation method. Chinese Patent CN201710134838.3. 2018.

  11. Zeng SN, Pian SJ, Su MY, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science. 2021;373:692.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhu MF. Nanocomposite fiber materials. Science Press; 2014.

    Google Scholar 

  13. Nagarajan S, Pochat-Bohatier C, Teyssier C. Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Adv. 2016;6: 109150.

    Article  ADS  CAS  Google Scholar 

  14. Zhang CM, Salick MR, Cordie TM. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mat Sc Eng C-Mater. 2015;49:463.

    Article  CAS  Google Scholar 

  15. Spinks GM, Mottaghitalab V, Bahrami-Samani M. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater. 2006;18:637.

    Article  CAS  Google Scholar 

  16. Tong HW, Wang M, Li ZY. Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed Mater. 2010;5: 054111.

    Article  ADS  PubMed  Google Scholar 

  17. Sharifzadeh G, Soheilmoghaddam M, Adelnia H. Biocompatible regenerated cellulose/halloysite nanocomposite fibers. Polym Eng Sci. 2020;60:1169.

    Article  CAS  Google Scholar 

  18. Talebian S, Mehrali M, Raad R. Electrically conducting hydrogel graphene nanocomposite biofibers for biomedical applications. Front Chem. 2020;8:88.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu XJ, Li JG, Bai YX. Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet-spinning. Mater Lett. 2017;194:224.

    Article  CAS  Google Scholar 

  20. Huang SW, Zhou L, Li MC. Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials. 2016;9:523.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Zhang XY, Chen XG. Preparation of polyamide 6/CeO2 composite nanofibers through electrospinning for biomedical applications. Int J Poly Sci. 2019;2019:2494586.

    Google Scholar 

  22. Ma Y, Bai DC, Hu XJ. Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications. ACS Appl Mater Interfaces. 2018;10:3002.

    Article  CAS  PubMed  Google Scholar 

  23. Awasthi GP, Maharjan B. Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers. Colloid Surface A. 2020;586: 124282.

    Article  CAS  Google Scholar 

  24. Suryavanshi A, Khanna K, Sindhu KR. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone–soft tissue engineering applications: in-vitro and in-vivo evaluation. Biomed Mater. 2017;12: 055011.

    Article  ADS  PubMed  Google Scholar 

  25. Apalangya VA, Rangari VK, Tiimob BJ. Eggshell based nano-engineered hydroxyapatite and poly(lactic) acid electrospun fibers as potential tissue scaffold. Int J Biomater. 2019;2019: 6762575.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li JQ, Wen YY, Xiao ZH, et al. Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance. Adv Funct Mater. 2022;32:2200937.

    Article  CAS  Google Scholar 

  27. Luo JJ, Wen YY, Jia XZ, et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat Commun. 2023;14:3019.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arias-Monje PJ, Davijani AAB, Lu MX. Engineering the interphase of single wall carbon nanotubes/polyacrylonitrile nanocomposite fibers with poly(methyl methacrylate) and its effect on filler dispersion, filler-matrix interactions, and tensile properties. ACS Appl Nano Mater. 2020;3:4178.

    Article  CAS  Google Scholar 

  29. Dalton AB, Collins S, Muñoz E. Super-tough carbon-nanotube fibres: these extraordinary composite fibres can be woven into electronic textiles. Nature. 2003;423:703.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Hu XJ, Ren N, Chao YZI. Highly aligned graphene oxide/poly(vinyl alcohol) nanocomposite fibers with high-strength, antiultraviolet and antibacterial properties. Compos Part A. 2017;102:297.

    Article  CAS  Google Scholar 

  31. Morimune-Moriya S, Ariyoshi M, Goto T. Ultradrawing of poly (vinyl alcohol)/graphene oxide nanocomposite fibers toward high mechanical performances. Compos Sci Tech. 2017;152:159.

    Article  CAS  Google Scholar 

  32. Kearns JC, Shambaugh RL. Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci. 2002;86:2079.

    Article  CAS  Google Scholar 

  33. Luo LB, Wu H, Liu Y. Synergistic “anchor” effect of carbon nanotubes and silica: a facile and efficient double-nanocomposite system to reinforce high performance polyimide fibers. Ind Eng Chem Res. 2019;58:16620.

    Article  CAS  Google Scholar 

  34. Ryu S, Lee YH, Hwang JW. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater. 2011;23:1971.

    Article  CAS  PubMed  Google Scholar 

  35. Novoselov KS, Geim AK, Morozov SV. Electric field effect in atomically thin carbon films. Science. 2004;306:666.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lee C, Wei X, Kysar JW. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zhu Y, James DK, Tour JM. New routes to graphene, graphene oxide and their related applications. Adv Mater. 2012;24:4924.

    Article  CAS  PubMed  Google Scholar 

  38. Lu JP. Elastic properties of single and multilayered nanotubes. J Phys Chem Solids. 1997;58:1649.

    Article  ADS  CAS  Google Scholar 

  39. Ausman KD, Piner R, Lourie O. Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B. 2000;104:8911.

    Article  CAS  Google Scholar 

  40. Xu WH, Ravichandran D, Jambhulkar S. Hierarchically structured composite fibers for real nanoscale manipulation of carbon nanotubes. Adv Funct Mater. 2021;31:2009311.

    Article  CAS  Google Scholar 

  41. Chen Y, Zhang H, Yang Y. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater. 2016;26:447.

    Article  CAS  Google Scholar 

  42. Li XL, Yin XW, Han MK, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C. 2017;5:4068.

    Article  CAS  Google Scholar 

  43. Yim YJ, Lee JJ, Tugirumubano A. Electromagnetic interference shielding behavior of magnetic carbon fibers prepared by electroless FeCoNi-plating. Materials. 2021;14:3774.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. González M, Pozuelo J, Baselga J. Electromagnetic shielding materials in GHz range. Chem Rec. 2018;18:1000.

    Article  PubMed  Google Scholar 

  45. Wang W, Li WY, Gao CC. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties. Appl Surf Sci. 2015;342:120.

    Article  ADS  CAS  Google Scholar 

  46. Im JS, Kim JG, Bae TS. Effect of heat treatment on ZrO2-embedded electrospun carbon fibers used for efficient electromagnetic interference shielding. J Phys Chem Solids. 2011;72:1175.

    Article  ADS  CAS  Google Scholar 

  47. Yim YJ, Baek YM, Park SJ. Influence of nickel layer on electromagnetic interference shielding effectiveness of CuS-polyacrylonitrile fibers. Bull Korean Chem Soc. 2018;39:1406.

    Article  CAS  Google Scholar 

  48. Liu LX, Chen W, Zhang HB. Tough and electrically conductive Ti3C2Tx MXene-based core-shell fibers for high-performance electromagnetic interference shielding and heating application. Chem Eng J. 2022;430: 133074.

    Article  CAS  Google Scholar 

  49. Wei HW, Zheng WH, Jiang ZX. CNT coatings grown on the outer and inner surfaces of magnetic hollow carbon fibers with enhanced electromagnetic interference shielding performance. J Mater Chem C. 2019;7:14375.

    Article  CAS  Google Scholar 

  50. Latko-Durałek P, Bertasius P, Macutkevic J. Fibers of thermoplastic copolyamides with carbon nanotubes for electromagnetic shielding applications. Materials. 2021;14:5699.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Ima JS, Kima JG, Lee SH. Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives. Mater Chem Phys. 2010;124:434.

    Article  Google Scholar 

  52. Gupta S, Tai NH. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon. 2019;152:159.

    Article  CAS  Google Scholar 

  53. Manna R, Srivastava SK. Reduced graphene oxide/Fe3O4/polyaniline ternary composites as a superior microwave absorber in the shielding of electromagnetic pollution. ACS Omega. 2021;6:9164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao HF, Zhang Q, Wu Z. Progress of electromagnetic shielding property of graphene-based material. New Chem Mater. 2016;44(2):1.

    ADS  Google Scholar 

  55. Yuksek M. Electromagnetic wave shielding and mechanical properties of vapor-grown carbon nanofiber/polyvinylidene fluoride composite fibers. J Eng Fiber Fabr. 2020;15:1.

    Google Scholar 

  56. Aoyama S, Park YT, Ougizawa T. Melt crystallization of poly (ethylene terephthalate): comparing addition of graphene vs carbon nanotubes. Polymer. 2014;55:2077.

    Article  CAS  Google Scholar 

  57. Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposite. Appl Clay Sci. 1999;15:31.

    Article  CAS  Google Scholar 

  58. Dogan M, Bayramli E. Effect of boron phosphate on the mechanical, thermal and fire retardant properties of polypropylene and polyamide-6 pibers. Fiber Polym. 2013;14(10):1595.

    Article  CAS  Google Scholar 

  59. Hribernik S, Smole MS, Kleinschek KS. Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stabil. 2007;92:1957.

    Article  CAS  Google Scholar 

  60. Wang X, Li QS, Di YB. Preparation and properties of flame-retardant viscose fiber containing phosphazene derivative. Fiber Polym. 2012;13(6):718.

    Article  CAS  Google Scholar 

  61. Zhai GX, Zhou JL, Xiang HX. Combustion forming hollow nanospheres as a ceramic fortress for flame-retardant fiber. Prog Nat Sci: Mater. 2021;31:239.

    Article  CAS  Google Scholar 

  62. Cai YB, Wu N, Wei QF. Structure, surface morphology, thermal and flammability characterizations of polyamide6/organic-modified Fe-montmorillonite nanocomposite fibers functionalized by sputter coating of silicon. Surf Coat Tech. 2008;203:264.

    Article  CAS  Google Scholar 

  63. Qiu MH, Wang D, Zhang LP. Simultaneously electrochemical exfoliation and functionalization of graphene nanosheets: Multifunctional reinforcements in thermal, flame-retardant, and mechanical properties of polyacrylonitrile composite fibers. Polym Compos. 2020;41:1561.

    Article  CAS  Google Scholar 

  64. Yu SL, Xiang HX, Zhou JL. Preparation and characterization of fire resistant PLA fibers with phosphorus flame retardant. Fiber Polym. 2017;18(6):1098.

    Article  CAS  Google Scholar 

  65. Xue BX, Song YH, Peng Y. Enhancing the flame retardant of polyethylene terephthalate (PET) fiber via incorporation of multi-walled carbon nanotubes based phosphorylated chitosan. J Text I. 2018;109(7):871.

    CAS  Google Scholar 

  66. Horrocks R, Sitpalan A, Zhou C. Flame retardant polyamide fibres: the challenge of minimising flame retardant additive contents with added nanoclays. Polymers. 2016;8:288.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim JS, Song JE, Lim DY. Flame-retardant mechanism and mechanical properties of wet-ppun poly(acrylonitrile-co-vinylidene chloride) pibers with antimony trioxide and zinc hydroxystannate. Polymers. 2020;12:2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dogan M, Erdogan S, Bayramlı E. Mechanical, thermal, and fire retardant properties of poly(ethylene terephthalate) fiber containing zinc phosphinate and organo-modified clay. J Therm Anal Calorim. 2013;112:871.

    Article  CAS  Google Scholar 

  69. Lee SH, Yi GR, Lim DY. Study on the flame retardant and mechanical properties of wet-spun poly(acrylonitrile-co-vinylchloride) fibers with antimony trioxide and zinc hydroxystannate. Fiber Polym. 2019;20(4):779.

    Article  CAS  Google Scholar 

  70. Jz MA, Wang D, Fu SH. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide. Text Res J. 2020;41(3):15.

    Google Scholar 

  71. Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flake. Nat Mater. 2017;16:834.

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Hu J, Huang Y, Yao Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl Mater Interf. 2017;9:13544.

    Article  CAS  Google Scholar 

  73. Hamadneh NN, Khan WS, Khan WA. Prediction of thermal conductivities of polyacrylonitrile electrospun nanocomposite fibers using artificial neural network and prey predator algorithm. J King Saud Univ Sci. 2019;31:618.

    Article  Google Scholar 

  74. Zhang XG, Wu BG, Chen G. Preparation and characterization of flexible smart glycol/polyvinylpyrrolidone/nano-Al2O3 phase change fibers. Energ Fuel. 2021;35:877.

    Article  CAS  Google Scholar 

  75. Tian MW, Zhang XS. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd Polym. 2014;111:456.

    Article  CAS  Google Scholar 

  76. Che HS, Chen QQ, Zhong Q. The effects of nanoparticles on morphology and thermal properties of erythritol/polyvinyl alcohol phase change composite fibers. E-Polymers. 2018;18(4):321.

    Article  CAS  Google Scholar 

  77. Khan WS, Hamadneh NN, Khan WA. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm. PLoS ONE. 2017;12(9): 0183920.

    Article  Google Scholar 

  78. Xin GQ, Yao TK, Sun HT. Highly thermally conductive and mechanically strong graphene fibers. Science. 2015;349:1083.

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Khan WS, Asmatulu R, Ahmed I. Thermal conductivities of electrospun PAN and PVP nanocomposite fibers incorporated with MWCNTs and NiZn ferrite nanoparticles. Int J Therm Sci. 2013;71:74.

    Article  CAS  Google Scholar 

  80. Qiu L, Zou HY, Zhu N. Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Appl Therm Eng. 2018;141:913.

    Article  CAS  Google Scholar 

  81. Meng WS, Nie MY, Liu ZY, et al. Buckled fiber conductors with resistance stability under strain. Adv Fiber Mater. 2021;3:149.

    Article  Google Scholar 

  82. Zhao S, Li J, Cao D, et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl Mater Interfaces. 2017;9(14):12147.

    Article  CAS  PubMed  Google Scholar 

  83. Seyedin S, Zhang P, Naebe M, et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz. 2019;6:219.

    Article  CAS  Google Scholar 

  84. Ajmal CM, Bae S, Baik S. A superior method for constructing electrical percolation network of nanocomposite fibers: in situ thermally reduced silver nanoparticles. Small. 2019;15:1803255.

    Article  Google Scholar 

  85. Han JT, Choi S, Jang JI. Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles. Sci Rep-UK. 2015;5:9300.

    Article  Google Scholar 

  86. Nilsson E, Oxfall H, Wandelt W. Melt spinning of conductive textile fibers with hybridized graphite nanoplatelets and carbon black filler. J Appl Polym Sci. 2013;130:2579.

    Article  CAS  Google Scholar 

  87. Kim SW, Kwon SN, et al. Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process. Compos Part B. 2019;167:573.

    Article  CAS  Google Scholar 

  88. Zhang X, Wang A, Zhou XY. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning. Carbon. 2020;165:340.

    Article  CAS  Google Scholar 

  89. Han ZP, Wang JQ, Liu SP, et al. Electrospinning of neat graphene nanofbers. Adv Fiber Mater. 2022;4:268.

    Article  CAS  Google Scholar 

  90. Wang K, Liu MQ, Song CY. Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide. Mater Des. 2018;148:167.

    Article  CAS  Google Scholar 

  91. Ma T, Gao HL, Cong HP. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv Mater. 2018;30:1706435.

    Article  Google Scholar 

  92. Xu Z, Liu Z, Sun HY, Gao C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv Mater. 2013;25:3249.

    Article  CAS  PubMed  Google Scholar 

  93. Vaia RA, Lee JW, Wang CS. Hierarchical control of nanoparticle deposition: high-performance electrically conductive nanocomposite fibers via infiltration. Chem Mater. 1998;10:2030.

    Article  CAS  Google Scholar 

  94. Bae S, Ajmal CM, Lee Y. Significantly enhanced mechanical strength by the hollow structure of conductive stretchable silver nanoflower polyurethane fibers. Adv Eng Mater. 2020;22:2000674.

    Article  CAS  Google Scholar 

  95. Lee YJ, Bae S, Hwang B. Considerably improved water and oil washability of highly conductive stretchable fibers by chemical functionalization with fluorinated silane. J Mater Chem C. 2019;7:12297.

    Article  CAS  Google Scholar 

  96. Zhang XX. Study and development of the far-infrared fibers and fabrics. Text Res J. 1994;15(11):530.

    Google Scholar 

  97. Bajirova M. Miraculous effects of negative ions on urogenital infections. Int J Gynecol Obstet. 2018;9:00297.

    Article  Google Scholar 

  98. Larciprete MC, Paoloni S, Orazi N. Infrared emissivity characterization of carbon nanotubes dispersed poly (ethylene terephthalate) fibers. Int J Therm Sci. 2019;146: 106109.

    Article  CAS  Google Scholar 

  99. Zhang KJ, Li QS, Luo JQ. Preperation and characterization of anion functional polyester fiber. J Funct Mater. 2017;9(48):09184.

    Google Scholar 

  100. Chen Z, Sun C, Zhu YN, et al. PET/Germanium fibrous composite fabricated by melt-spinning technique: negative air ions emission and antibacterial properties. Mater Rev. 2008;32(4):1333.

    Google Scholar 

  101. Wang X, Yan QL, Gao X, et al. Infrared and fluorescence properties of reduced graphene oxide/regenerated cellulose composite fibers. BioResources. 2020;15(2):4434.

    Article  CAS  Google Scholar 

  102. Li N, Li JW, Lv LH, et al. Preparation and properties of nano-graphene/PLA far infrared fibers. China Text Aux. 2018;35(11):33.

    CAS  Google Scholar 

  103. Zhang YC, Hu JL. Robust effects of graphene oxide on polyurethane/tourmaline nanocomposite fiber. Polymers. 2021;13:16.

    Article  Google Scholar 

  104. Hu YM, An WF, Zhang DD, et al. Synthesis of tourmaline-containing functional copolymer and its fibre. J Funct Mater. 2021;2(52):02034.

    Google Scholar 

  105. Li CL, Yan J, Jia SJ, et al. Preparation and properties study of germanium cellulose fiber. China Knitting Ind. 2020;11:18.

    CAS  Google Scholar 

  106. Hu XW, Xu RP, Wang SC, et al. Preparation and properties of graphene anion modified polymer fibers. Synth Fiber China. 2018;47(4):30.

    Google Scholar 

  107. Jiao J, Li QS, Lu ZZ, et al. Structure and properties of bamboo carbon modified polyester staple fiber. China Synth Fiber Ind. 2011;34(3):31.

    CAS  Google Scholar 

  108. Shindell D, Smith CJ. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature. 2019;573:408.

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. InfoMat. 2020;2:1131.

    Article  Google Scholar 

  110. Bai P, Zhu G, Lin ZH, et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano. 2013;7:3713.

    Article  CAS  PubMed  Google Scholar 

  111. Yin J, Zhang Z, Li X, et al. Waving potential in graphene. Nat Commun. 2014;5:3582.

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Lan XQ, Wang TZ, Liu CC, et al. A high performance all-organic thermoelectric fiber generator towards promising wearable electron. Compos Sci Tech. 2019;182: 107767.

    Article  CAS  Google Scholar 

  113. Li XH, Lin ZH, Cheng G, et al. 3D Fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano. 2014;8(10):10674.

    Article  CAS  PubMed  Google Scholar 

  114. Yu XH, Pan J, Zhang J, et al. A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J Mater Chem A. 2017;5:6032.

    Article  CAS  Google Scholar 

  115. He X, Zi YL, Guo HY, et al. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Funct Mater. 2017;27:1604378.

    Article  Google Scholar 

  116. Cheng Y, Lu X, Chan KH, et al. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy. 2017;41:511.

    Article  CAS  Google Scholar 

  117. Yang YJ, Xu BG, Gao YY, et al. Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles. ACS Appl Mater Interfaces. 2021;13:49927.

    Article  CAS  PubMed  Google Scholar 

  118. Liu JM, Cui NY, Du T, et al. Coaxial double helix structured fiber-based triboelectric nanogenerator for effectively harvesting mechanical energy. Nanoscale Adv. 2020;2:4482.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sim HJ, Choi CS, Shi HK, et al. Stretchable triboelectric fiber for self-powered kinematic sensing textile. Sci Rep. 2020;6:35153.

    Article  ADS  Google Scholar 

  120. Zhang M, Gao T, Wang JS. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy. 2015;13:298.

    Article  CAS  Google Scholar 

  121. Bairagi S, Ali SW. A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. Eur Polym J. 2019;116:554.

    Article  CAS  Google Scholar 

  122. Parandeh S, Kharaziha M, Karimzadeh F. An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy. 2019;59:412.

    Article  CAS  Google Scholar 

  123. Fuh YK, Kuo CC, Huang ZM. A Transparent and flexible graphene-piezoelectric fiber generator. Small. 2016;12(14):1875.

    Article  CAS  PubMed  Google Scholar 

  124. Liu CL, Zhang WG, Sun JB, et al. Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO-ZnSe bilayer structure wire. Appl Surf Sci. 2014;322:95.

    Article  ADS  CAS  Google Scholar 

  125. Zhao TC, Hu YJ, Zhuang W, et al. A fiber fluidic nanogenerator made from aligned carbon nanotubes composited with transition metal oxide. ACS Mater Lett. 2021;3:1448.

    Article  CAS  Google Scholar 

  126. Ghosha SK, Mandal D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy. 2018;53:245.

    Article  Google Scholar 

  127. Parandeh S, Kharaziha M, Karimzadeh F, et al. Triboelectric nanogenerators based on graphene oxide coated nanocomposite fibers for biomedical applications. Nanotechnology. 2020;31: 385402.

    Article  CAS  PubMed  Google Scholar 

  128. Miller JR, Simon P. Electrochemical capacitors for energy management. Science. 2008;321:651.

    Article  CAS  PubMed  Google Scholar 

  129. Yang QY, Xu Z, Gao C. Graphene fiber based supercapacitors: strategies and perspective toward high performances. J Energy Chem. 2018;27:6.

    Article  ADS  Google Scholar 

  130. Lyu W, Zhang WY, Liu H, et al. Conjugated microporous polymer network grafted carbon nanotube fibers with tunable redox activity for efficient flexible wearable energy storage. Chem Mater. 2020;32:8276.

    Article  Google Scholar 

  131. Ke QQ, Wang J. Graphene-based materials for supercapacitor electrodes—a review. J Materiomics. 2016;2:37.

    Article  Google Scholar 

  132. Lu Z, Foroughi J, Wang CY, et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv Energy Mater. 2018;8:1702047.

    Article  Google Scholar 

  133. Cai SY, Huang TQ, Chen H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J Mater Chem A. 2017;5:22489.

    Article  CAS  Google Scholar 

  134. Liu JL, Wang DS, Li JM, et al. Facile fabrication of hierarchically porous graphene/poly(1,5-diaminoanthraquinone) nanocomposite fibers as flexible and robust free-standing electrodes for solid-state supercapacitors. J Taiwan Inst Chem E. 2021;126:154.

    Article  CAS  Google Scholar 

  135. Kou L, Huang TQ, Zheng BN, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun. 2014;5:3754.

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Zhao XL, Zheng BN, Huang TQ, et al. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale. 2015;7:9399.

    Article  ADS  CAS  PubMed  Google Scholar 

  137. Chen XL, Qiu LB, Ren J, et al. Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater. 2013;25:6436.

    Article  CAS  PubMed  Google Scholar 

  138. Pan ZH, Zhong J, Zhang QC, et al. Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy density. Adv Energy Mater. 2018;8:1702946.

    Article  Google Scholar 

  139. Yang ZP, Zhao W, Niu YT, et al. Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon. 2018;132:241.

    Article  CAS  Google Scholar 

  140. Pan ZH, Yang J, Zhang QC, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv Energy Mater. 2019;9:1802753.

    Article  Google Scholar 

  141. Lim L, Liu YS, Liu WW, et al. All-in-one graphene based composite fiber: Toward wearable supercapacitor. ACS Appl Mater Interfaces. 2017;9:39576.

    Article  CAS  PubMed  Google Scholar 

  142. Adusei PK, Kanakaraj SN, Gbordzoe S, et al. A scalable nano-engineering method to synthesize 3D-graphenecarbon nanotube hybrid fibers for supercapacitor applications. Electrochim Acta. 2019;312:411.

    Article  CAS  Google Scholar 

  143. Gopalsamy K, Xu Z, Zheng BN, et al. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale. 2014;10:1039.

    Google Scholar 

  144. Jian XL, Li HB, Li H, et al. Flexible and freestanding MoS2/rGO/CNT hybrid fibers for high capacity all-solid supercapacitors. Carbon. 2021;172:132.

    Article  CAS  Google Scholar 

  145. Li XY, Liu D, Yin X, et al. Hydrated ruthenium dioxides @ graphene based fiber supercapacitor for wearable electronics. J Power Sourc. 2019;440: 227143.

    Article  CAS  Google Scholar 

  146. Hua L, Ma ZY, Shi PP, et al. Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. J Mater Chem A. 2017;5:2483.

    Article  CAS  Google Scholar 

  147. Guo ZJ, Lu Z, Li Y, et al. Highly performed fiber-based supercapacitor in a conjugation of mesoporous MXene. Adv Mater Interf. 2022;9: 2101977.

    Article  CAS  Google Scholar 

  148. Xu T, Yang DZ, Fan ZJ, et al. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon. 2019;152:134.

    Article  CAS  Google Scholar 

  149. Seyedin SY, Yanza ERS, Razal JM. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A. 2017;5: 24076.

    Article  CAS  Google Scholar 

  150. Yang QY, Xu Z, Fang B, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A. 2017;5: 22113.

    Article  CAS  Google Scholar 

  151. Gao LB, Song J, Surjadi JU, et al. Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl Mater Interfaces. 2018;10:28597.

    Article  CAS  PubMed  Google Scholar 

  152. Guo ZJ, Li Y, Lu Z, et al. High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. J Mater Sci. 2022;57:3613.

    Article  ADS  CAS  Google Scholar 

  153. Zhang ZF, Zhang DS, Lin H, et al. Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. J Power Sourc. 2019;433: 226711.

    Article  CAS  Google Scholar 

  154. Zhang ZY, Xiao F, Xiao J, et al. Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A. 2015;3: 11817.

    Article  CAS  Google Scholar 

  155. Deng J, Zhang Y, Zhao Y, et al. A shape-memory supercapacitor fiber. Angew Chem Intl Ed. 2015;54: 15419.

    Article  CAS  Google Scholar 

  156. Yuan H, Wang G, Zhao YX, et al. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020;13(6):1686.

    Article  Google Scholar 

  157. Sun J, Zhang QC, Wang XN, et al. Constructing hierarchical dandelion-like molybdenum–nickel–cobalt ternary oxide nanowire arrays on carbon nanotube fiber for high performance wearable fiber-shaped asymmetric supercapacitors. J Mater Chem A. 2017;5: 21153.

    Article  CAS  Google Scholar 

  158. Cai ZB, Li L, Ren J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J Mater Chem A. 2013;1:258.

    Article  CAS  Google Scholar 

  159. Wang CJ, Zhai SL, Yuan ZW, et al. A core-sheath holey graphene/graphite composite fiber intercalated with MoS2 nanosheets for high-performance fiber supercapacitors. Electrochim Acta. 2019;305:493.

    Article  CAS  Google Scholar 

  160. Li MY, Zu M, Yu JS, et al. Stretchable Fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small. 2017;13: 1602994.

    Article  Google Scholar 

  161. Gopalsamy K, Yang QY, Cai SY, et al. Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors. J Energy Chem. 2019;34:104.

    Article  Google Scholar 

  162. Ma Y, Liu N, Li L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun. 2017;8:1.

    Article  ADS  Google Scholar 

  163. Zhang T, Han SS, Guo WL, et al. Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. Sustain Mater Techno. 2019;17: e00096.

    Google Scholar 

  164. Guo W, Liu C, Zhao F, et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber. Adv Mater. 2012;24:5379.

    Article  CAS  PubMed  Google Scholar 

  165. Zhou JW, Li XL, Yang C, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency. Adv Mater. 2019;31: 1804439.

    Article  Google Scholar 

  166. Zeng YX, Meng Y, Lai ZZ, et al. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode. Adv Mater. 2017;29: 1702698.

    Article  Google Scholar 

  167. Xiao X, Xiao X, Zhou YH, et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci Adv. 2021;7(49): abl3742.

    Article  ADS  Google Scholar 

  168. Li M, Meng JS, Li Q, et al. Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries. Adv Funct Mater. 2018;28: 1802016.

    Article  Google Scholar 

  169. Xu YF, Zhao Y, Ren J, et al. An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem Int E. 2016;55:7979.

    Article  CAS  Google Scholar 

  170. Li M, Li ZQ, Ye XR, et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl Mater Interfaces. 2021;13: 17110.

    Article  CAS  PubMed  Google Scholar 

  171. Weng W, Sun Q, Zhang Y, et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 2014;14:3432.

    Article  ADS  CAS  PubMed  Google Scholar 

  172. Zhang QC, Li CW, Li QL, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 2019;19:4035.

    Article  ADS  PubMed  Google Scholar 

  173. Zhang Y, Wang YH, Wang L, et al. A fiber-shaped aqueous lithium ion battery with high power density. J Materi Chem A. 2016;4:9002.

    Article  CAS  Google Scholar 

  174. Kim JC, Kim DW. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries. Chem Asian J. 2014;9:3313.

    Article  CAS  PubMed  Google Scholar 

  175. Zhu YJ, Han XG, Xu YH, et al. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.

    Article  CAS  PubMed  Google Scholar 

  176. Qin XY, Zhang HR, Wu JX, et al. Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon. 2015;87:347.

    Article  CAS  Google Scholar 

  177. Zhang CL, Lu BR, Cao FH, et al. Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries. J Mater Chem A. 2018;6: 12962.

    Article  ADS  CAS  Google Scholar 

  178. Chen X, Hu P, Xiang JW, et al. Confining silicon nanoparticles within freestanding multichannel carbon fibers for high-performance Li-ion batteries. ACS Appl Energy Mater. 2019;2:5214.

    Article  CAS  Google Scholar 

  179. Hwang TH, Lee YM, Kong BS, et al. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012;12:802.

    Article  ADS  CAS  PubMed  Google Scholar 

  180. Hoshide T, Zheng YC, Hou JY, et al. Flexible lithium-ion fiber battery by the regular stacking of two dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 2017;17:3543.

    Article  ADS  CAS  PubMed  Google Scholar 

  181. Chen Q, Sun S, Zhai T, et al. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv Energy Mater. 2018;8: 1800054.

    Article  Google Scholar 

  182. Li H, Shao F, Wen XZ, et al. Graphene/MXene fibers-enveloped sulfur cathodes for high-performance Li-S batteries. Electrochim Acta. 2021;371: 137838.

    Article  CAS  Google Scholar 

  183. Kim JC, Kim DW, et al. Synthesis of multiphase SnSb nanoparticles-on-SnO2/Sn/C nanofibers for use in Li and Na ion battery electrodes. Electrochem Commun. 2014;46:124.

    Article  CAS  Google Scholar 

  184. Yan B, Chen L, Wang T, et al. Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries. Electrochim Acta. 2015;176:1358.

    Article  CAS  Google Scholar 

  185. Zhu YJ, Fan XL, Suo LM, et al. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano. 2016;10:1529.

    Article  CAS  PubMed  Google Scholar 

  186. Qu GL, Geng HB, Ge DH, et al. Graphene-coating mesoporous Co3O4 fibers as an efficient anode material for Li-ion batteries. RSC Adv. 2016;6(75):71006.

    Article  ADS  CAS  Google Scholar 

  187. Gu MS, Ko SH, Yoo SM, et al. Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes. J Power Sourc. 2015;300:351.

    Article  ADS  CAS  Google Scholar 

  188. Lee JG, Kwon YB, Ju JY, et al. Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries. J Appl Electrochem. 2017;47:865.

    Article  CAS  Google Scholar 

  189. Cheng X, Na R, Wang XX, et al. Si nanoparticles embedded in 3D carbon framework constructed by sulfur-doped carbon fibers and graphene for anode in lithium-ion battery. Inorg Chem Front. 2019;6:1996.

    Article  CAS  Google Scholar 

  190. Zhou YY, Jiang K, Zhao ZG, et al. Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability. Energy Storage Mater. 2020;24:504.

    Article  Google Scholar 

  191. Lin HJ, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater. 2014;26:1217.

    Article  CAS  PubMed  Google Scholar 

  192. Sanchez JS, Xu J, Xia ZY, et al. Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries. Compos Sci Technol. 2021;208: 108768.

    Article  CAS  Google Scholar 

  193. Zou YH, Yang XF, Lv CX, et al. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv Sci. 2017;4:1600262.

    Article  Google Scholar 

  194. Pandey N, Tiwari K, Roy A. ZnO-TiO2 nanocomposite: Characterization and moisture sensing studies. B Mater Sci. 2012;35:347.

    Article  CAS  Google Scholar 

  195. Khan AQ, Yu KQ, Li JT, et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv Fiber Mater. 2022;4:1572.

    Article  CAS  Google Scholar 

  196. Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014;14:7881.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  197. Horzum N, Tascıoglu D, Okur S, et al. Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta. 2011;85:1105.

    Article  CAS  PubMed  Google Scholar 

  198. Parangusan H, Bhadra J, Ahmad Z, et al. Humidity sensor based on poly(lactic acid)/PANI-ZnO composite electrospun fibers. RSC Adv. 2021;11:28735.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang XF, Ding B, Yu JY, et al. Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J Mater Chem. 2011;21:16231.

    Article  CAS  Google Scholar 

  200. Lv SJ, Shuai LYZ, Ding WF, et al. Flexible humidity sensitive fiber with swellable metal-organic frameworks. Adv Fiber Mater. 2021;3:107.

    Article  CAS  Google Scholar 

  201. Du B, Yang DX, She XY, et al. MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sens Actuat B-Chem. 2017;251:180.

    Article  CAS  Google Scholar 

  202. Choi SJ, Yu HY, Jang JS, et al. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small. 2018;14:1703934.

    Article  Google Scholar 

  203. Chen ZC, Chang TL, Su KW, et al. Application of self-heating graphene reinforced polyvinyl alcohol nanowires to high-sensitivity humidity detection. Sens Actuat B-Chem. 2021;327: 128934.

    Article  CAS  Google Scholar 

  204. Gao R, Lu DF, Cheng J, et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sens Actuat B-Chem B. 2016;222:618.

    Article  CAS  Google Scholar 

  205. Qi HS, Schulz B, Vad T, et al. Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces. 2015;7:22404.

    Article  CAS  PubMed  Google Scholar 

  206. Jiang M, Wang CC, Zhang XR, et al. A cellular nitric oxide sensor based on porous hollow fiber with flow-through configuration. Biosens Bioelectron. 2021;191: 113442.

    Article  CAS  PubMed  Google Scholar 

  207. Ma JW, Fan HQ, Li ZX, et al. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens Actuat B-Chem. 2021;334: 129677.

    Article  CAS  Google Scholar 

  208. Wang XP, Li YL, Pionteck J, et al. Flexible poly(styrene-butadiene-styrene)/carbon nanotube fiber based vapor sensors with high sensitivity, wide detection range, and fast response. Sens Actuat B-Chem. 2018;256:896.

    Article  CAS  Google Scholar 

  209. Cabrala TS, Sgobbib LF, Delezuk J, et al. Glucose sensing via a green and low-cost platform from electrospun poly (vinyl alcohol)/graphene quantum dots fibers. Mater Today: Proc. 2019;14:694.

    Google Scholar 

  210. Shu Y, Su T, Lu Q, et al. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal Chem. 2021;93:16222.

    Article  CAS  PubMed  Google Scholar 

  211. Inderan V, Arafat MM, Hasee ASMA, et al. Electrospun (nickel and palladium) tin(IV) oxide/polyaniline/polyhydroxy-3-butyrate biodegradable nanocomposite fibers for low temperature ethanol gas sensing. Nanotechnology. 2020;31: 425503.

    Article  CAS  PubMed  Google Scholar 

  212. Zhu ZY, Liu CC, Jiang FX, et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber. J Hazard Mater. 2021;411: 125008.

    Article  CAS  PubMed  Google Scholar 

  213. Eom W, Jang JS, Lee SH, et al. Effect of metal/metal oxide catalysts on graphene fiber for improved NO2 sensing. Sens Actuat B-Chem. 2021;344: 130231.

    Article  CAS  Google Scholar 

  214. Shin DH, Choi YS, Park SY, et al. Fast and complete recovery of TMDs-decorated rGO fiber gas sensors at room temperature. Appl Surf Sci. 2022;578: 151832.

    Article  CAS  Google Scholar 

  215. Zeng JF, Ding XT, Chen LW, et al. Ultra-small dispersed CuxO nanoparticles on graphene fibers for miniaturized electrochemical sensor applications. RSC Adv. 2019;9:28207.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ugale AD, Umarji GG, Jung SH, et al. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature. Sens Actuat B-Chem. 2020;308: 127690.

    Article  CAS  Google Scholar 

  217. Lee SH, Eom W, Shin H, et al. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces. 2020;12:10434.

    Article  CAS  PubMed  Google Scholar 

  218. Li WW, Chen RS, Qi WZ, et al. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 2019;4:2809.

    Article  CAS  PubMed  Google Scholar 

  219. Chen C, Han Y, Sun HY, et al. Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof. Text Res J. 2023;44(1):47.

    Google Scholar 

  220. Liang J, Wu JW, Guo J, et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl Sci Rev. 2023;10: nwac208.

    Article  CAS  PubMed  Google Scholar 

  221. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature. 2021;591:240.

    Article  ADS  CAS  PubMed  Google Scholar 

  222. Yan W, Inès R, Güven K, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol. 2020;15:875.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L. J. Liu and D. Chang have contributed equally to this work. The authors would like to thank Zheng Li in School of Micro-Nano Electronics at ZJU-Hangzhou Global Scientific and Technological Innovation Center for discussion. The authors would also like to thank Lin Ding and Tianfeng Qin in MOE Key Laboratory of Macromolecular Synthesis and Functionalization at Zhejiang University for assistance with modifying graphical abstract and 6.2.2 section. The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 52090030), Shanxi-Zheda Institute of New Materials and Chemical Engineering (2022SZ-TD011, 2022SZ-TD012, 2022SZ-TD014, and 2021SZ-FR004), and the Fundamental Research Funds for the Central Universities (No. 2021FZZX001-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Ethics declarations

Conflict of Interest

Chao Gao is an Editorial Board Member/Editor-in-Chief for [Advanced Fiber Materials] and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chang, D. & Gao, C. A Review of Multifunctional Nanocomposite Fibers: Design, Preparation and Applications. Adv. Fiber Mater. 6, 68–105 (2024). https://doi.org/10.1007/s42765-023-00340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00340-1

Keywords

Navigation